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1 Lie-Transport and Advective Gauge

In ideal, i.e. non-resistive, MHD we can write the induction equation as

∂B

∂t
= ∇× (u × B), (1)

or using the vector potential A as

∂A

∂t
= u × B +∇

∂Λ

∂t
, (2)

with the gauge Λ that we are free to choose from the set of differentiable functions R
4 → R

satisfying the boundary conditions.

From differential geometry we know about the Lie-transport of differentiable forms that are

associated to vector fields. To the vector potential A we can associate a 1-form, since A is a line

density. Similarly, to the magnetic field B we can associate a differentiable 2-form, since it is a

surface density. If A were idealy advected by a flow generated by the velocity field u it would

follow the equation
∂A

∂t
= u × B −∇(u · A). (3)

Combining equations (2) and (3) the gauge field must follow the evolution equation

∂Λ

∂t
= −u · A. (4)

If we started with a vector potential A in some gauge, we evolve A according to equation (2)

and the gauge field Λ according to equation (4). However, this requires an initial condition for

Λ and it’s boundary condition to be defined. But, since A is now Lie-transported, we should not

need to solve for an evolution equation for A any more as long as we know the fluid’s position at

any time and can differentiate according to their initial positions. However, this is in general not

possible due to strong turbulent motions.

This gauge has the property that we can easily calculate the evolution of the magnetic helicity

density as its advective flux:

∂h

∂t
=

∂A

∂t
· B + A ·

∂B

∂t
(5)

= −∇ · (uh). (6)

This is just the Lie transport of a density h.
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2 Advecto-Resistive Gauge

The above considerations are not new and have been used in the past (Candelaresi et al., 2011) for

the resistive system. With this additional term equation (3) reads

DAar
i

Dt
= −uj,i A

ar
j + η∇2Aar

i . (7)

Numerical experiments have shown (Candelaresi et al., 2011) that solving this equation directly

leads to numerical instabilities. Therefore, it is preferred to solve the induction equation in the

resistive gauge
∂Ar

∂t
= u × B + η∇2Ar, (8)

which is numerically well behaved. Hence, all their simulations are performed in the resistive

gauge.

In order to obtain the magnetic vector potential in the advecto-resistive gauge they apply the

gauge transformation

Aar = Ar +∇Λ
r:ar, (9)

with the gauge transformation Λ
r:ar. Similarly to the ideal case, this field follows the evolution

equation
DΛ

r:ar

Dt
= −u · Ar + η∇2

Λ
r:ar. (10)

With that the magnetic helicity density of the two gauges transform according to

har = hr +∇Λ
r:ar · B. (11)

The helicity density follows
∂har

∂t
= −2ηJ · B −∇ · Far, (12)

with the advecto-resistive helicity flux

Far = haru − η(∇ · Aar)B + ηJ × Aar. (13)

Contrast this to the resistive helicity flux

Fr = hru − (u · Ar + η∇ · Ar)B + ηJ × Ar. (14)

3 Homogeneous Periodic Domain

Following Axel’s turbulent simulations I perform the same simulations in the resistive gauge using

the evolution equations for the gauge transformation (9) which I use to compute Aar from Ar, har

and Far. I solve the viscous and resistive induction equations in a periodic box for homogeneous

helical forcing in a periodic box. The helicity spectra and fluxes are compared to the resistive

gauge simulations, performed by Axel and are shown in Figure 1.
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Figure 1: Compensated magnetic helicity spectra and magnetic energy spectra for the homoge-

neous turbulence case (upper panel) and inhomogeneous turbulence case (lower panel) at simula-

tion time t = 16000.
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