Measuring tangling in the solar photosphere

Simon Candelaresi, David Pontin, Anthony Yeates, Gunnar Hornig, Paul Bushby

Coronal Magnetic Fields

NASA

(Thiffeault et al. 2006)

Field line tangling in solar magnetic fields.

Study the tangling of solar magnetic field lines.

Blinking Vortex Benchmark

Repeated applications of the blinking vortex motion.

World lines correspond to 3d braided magnetic field (pig tail, E3).

Driven Magnetic Fields in MHD

Null pair creation/annihilation.

Footpoint motion can alter the field line topology.

Magneto-Convection Simulations

(Bushby et al. 2012)

Helmholtz-Hodge Decomposition: $\mathbf{u} = \mathbf{u}_i + \mathbf{u}_c + \mathbf{u}_h$

 $\mathbf{u}_{i} = \nabla \times (\psi_{z}), \quad \mathbf{u}_{c} = \nabla \phi, \quad \mathbf{u}_{h} = \nabla \chi,$

Active Region 10930

12th of December 2006, 14:04 UT, (Tsuneta et al. 2008, Fisher & Welsch 2008)

$$\frac{\mathrm{d}\mathbf{r}_{1}(t)}{\mathrm{d}t} = \mathbf{u}(\mathbf{r}_{1}(t), t) \quad \frac{\mathrm{d}\mathbf{r}_{2}(t)}{\mathrm{d}t} = \mathbf{u}(\mathbf{r}_{2}(t), t)$$
$$\Theta(\mathbf{r}_{1}, \mathbf{r}_{2}, t) = \arctan\left(\frac{y_{2}(t) - y_{1}(t)}{x_{2}(t) - x_{1}(t)}\right)$$
$$(\mathbf{r}_{1}, \mathbf{r}_{2}, t) = \frac{1}{L_{x}L_{y}} \int_{0}^{T} \int_{(0,0)}^{(L_{x}, L_{y})} \frac{\mathrm{d}\Theta(\mathbf{r}_{1}, \mathbf{r}_{2}, t)}{\mathrm{d}t} \, \mathrm{d}\mathbf{r}_{2} \, \mathrm{d}t$$

normalized averaged winding number:

$$\Omega(\mathbf{r}_1, T) = \frac{\Theta(\mathbf{r}_1, T)}{q(T)}$$

Finite Time Topological Entropy

Finite Time Topological Entropy

It takes 3.059h for the photosphere to get as tangled as during for one cycle of the blinking vortex motion.

Conclusions

- Driving changes magnetic field topology
- High degree of winding possible.
- High degree of entanglement
- Tangled magnetic field stores free energy to be released in reconnection events.

Numerical Methods in MHD

Scottish Numerical Methods Network 2018

7 September 2018

University of Dundee

maths.dundee.ac.uk

s.candelaresi@dundee.ac.uk

normalization:
$$q(T) = \frac{1}{l_{\text{granules}}L_xL_y} \int_0^T |\mathbf{u}| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t.$$

$$\mathbf{u} = \mathbf{u}_{i} + \mathbf{u}_{c} + \mathbf{u}_{h}$$

Compressional part does not significantly contribute to the winding.

Passive Scalar

initial profile: c(x, y) = x + y

No clear scale due to turbulent motions.