

Current Formation During Magnetic Field Relaxation

Simon Candelaresi, David Pontin, Gunnar Hornig

Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity

Minimum energy state

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = 0 \iff \nabla \times \mathbf{B} = \alpha \mathbf{B}$

Parker: Equilibrium with the same topology exists only if the twist varies uniformly along the field lines. Strongly braided fields \rightarrow topological dissipation. (Parker 1972)

Braided fields from foot point motion complex enough. (Parker 1983)

Solutions possible with filamentary current structures (sheets). *(Mikic 1989, Low 2010)*

NASA

Methods

Ideal (non-resistive) evolution Frozen in magnetic field (Batchelor, 1950)

Preserves topology and divergence-freeness.

Magneto-frictional term: $\mathbf{u} = \mathbf{J} \times \mathbf{B}$ $\mathbf{J} = \nabla \times \mathbf{B}$

$$rightarrow rac{\mathrm{d}E_{\mathrm{M}}}{\mathrm{d}t} < 0$$
 (Craig and Sneyd 1986)

Fluid with pressure: $\mathbf{u} = \mathbf{J} \times \mathbf{B} - \beta \nabla \rho$

Fluid with inertia: $d\mathbf{u}/dt = (\mathbf{J} \times \mathbf{B} - \nu \mathbf{u} - \beta \nabla \rho)/\rho$

For $\mathbf{J} = \nabla \times \mathbf{B}$ use mimetic numerical operators. (Hyman, Shashkov 1997)

Own GPU code GLEMuR: (https://github.com/SimonCan/glemur) (Candelaresi et al. 2014) 3

Highly Braided Fields

Sufficiently highly braided according to Parker.

(Candelaresi et al. 2015)

Distorted Magnetic Fields

y

Magnetic Nulls

Singular current sheets observed at magnetic nulls (B = 0)

Y Z

3.37

(Syrovatskiĭ 1971; Pontin & Craig 2005; Fuentes-Fernández & Parnell 2012, 2013; Craig & Pontin 2014)

 $\mathbf{u} = \mathbf{J} \times \mathbf{B}$

singular current sheets at magnetic nulls

Pressure cannot balance singularity.

Magnetic Carpet

Questions: How do disturbances travel into the domain? Reconnection at null point? Propagation in presence of nulls?

full resistive MHD simulations with the PencilCode initially homogeneous field, E3 type of boundary driving

E3 Experiments

Null Points

Nulls inhibit the propagation of perturbations.

waves/oscillations?

Conclusions

- Topology preserving relaxation of magnetic fields.
- Current concentrations not singular.
- Current increases strongly with field complexity.
- Singular currents at magnetic nulls.
- Braiding through photospheric foot point motion.
- Null point disruption through boundary motions.

Simply Twisted Fields

Magnetic streamlines:

(Candelaresi et al. 2014)

PhD Projects @ Dundee

Project areas:

- Modelling of solar or astrophysical magnetic fields.
- Dynamics of the Sun's atmosphere.
- Topology of magnetic fields.
- Modelling of three-dimensional magnetic reconnection.
- Development of numerical codes for MHD problems.
- Development of measures of complexity for magnetic and electromagnetic fields.
- Application of knot theory to magnetic fields.
- Representation and visualization of electromagnetic fields.

Funding: PhD Scholarship is currently available for UK nationals (or equivalent UK status as detailed by STFC)

http://www.maths.dundee.ac.uk/mhd/phd.shtml