

Simon Candelaresi, David MacTaggart

Twisted Magnetic Fields

Twisted fields are more likely to erupt (Canfield et al. 1999).

(MacTaggart, 2020)

Twist increases the stability of magnetic fields in tokamaks.

Solar Magnetic Field

(Trace)

(Trace)

Twisted flux tubes may rise to the corona. (Prior and MacTaggart 2016).

Coronal Magnetic Fields

NASA

(Thiffeault et al. 2006)

Magnetohydrodynamics

Non-relativistic + isothermal + compressible + viscous medium.

$$\begin{split} \frac{\mathrm{D}\ln\rho}{\mathrm{D}t} &= -\boldsymbol{\nabla}\cdot\boldsymbol{u} \quad \text{conservation of mass} \\ \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} &= -c_{\mathrm{S}}^{2}\boldsymbol{\nabla}\ln\rho + \boldsymbol{J}\times\boldsymbol{B}/\rho + \boldsymbol{F}_{\mathrm{visc}} \quad \text{momentum eq.} \\ \frac{\partial\boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla}\times(\boldsymbol{u}\times\boldsymbol{B}) + \eta\nabla^{2}\boldsymbol{B} \quad \text{induction eq.} \\ & \left(\frac{\partial\boldsymbol{A}}{\partial t} = \boldsymbol{u}\times\boldsymbol{B} + \eta\nabla^{2}\boldsymbol{A}\right) \\ \frac{\mathrm{D}}{\mathrm{D}t} &= \frac{\partial}{\partial t} + \boldsymbol{u}\cdot\boldsymbol{\nabla} \quad \boldsymbol{B} = \boldsymbol{\nabla}\times\boldsymbol{A} \quad \boldsymbol{J} = \boldsymbol{\nabla}\times\boldsymbol{B} \end{split}$$

Magnetic Helicity

Gauss linking number:

$$lk(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\partial \boldsymbol{r}_{1}(t_{1})}{\partial t_{1}} \times \frac{\boldsymbol{r}_{1} - \boldsymbol{r}_{2}}{|\boldsymbol{r}_{1} - \boldsymbol{r}_{2}|^{3}} \cdot \frac{\partial \boldsymbol{r}_{2}(t_{2})}{\partial t_{2}} dt_{1} dt_{2}$$

Magnetic helicity:

$$H_{\rm M} = \int_V \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V$$

Biot-Savart:

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{1}{4\pi} \int_{V} \boldsymbol{B}(\boldsymbol{x}') \times \frac{\boldsymbol{x} - \boldsymbol{x}'}{|\boldsymbol{x} - \boldsymbol{x}'|^{3}} \, \mathrm{d}^{3} \boldsymbol{x}'$$

$$H_{\rm m} = \frac{1}{4\pi} \int_V \int_V \underline{\boldsymbol{B}(\boldsymbol{x}')} \times \frac{\boldsymbol{x} - \boldsymbol{x}'}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \cdot \underline{\boldsymbol{B}(\boldsymbol{x})} \, \mathrm{d}^3 \boldsymbol{x}' \, \mathrm{d}^3 \boldsymbol{x}$$

Magnetic Helicity

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

n = number of mutual linking

Conservation of magnetic helicity:

 $E_{\rm m}(k) \ge k|H(k)|/2\mu_0$

$$\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$$

Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Ideal MHD

$$\begin{split} \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) \qquad \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \\ \text{1-form:} \quad \alpha &= A_x \mathrm{d} x + A_y \mathrm{d} y + A_z \mathrm{d} z \\ \text{2-form:} \quad \beta &= B_x \mathrm{d} y \wedge \mathrm{d} z + B_y \mathrm{d} z \wedge \mathrm{d} x + B_z \mathrm{d} x \wedge \mathrm{d} y \\ \text{3-form:} \quad h &= (A_x B_x + A_y B_y + A_z B_z) \mathrm{d} x \wedge \mathrm{d} y \wedge \mathrm{d} z \\ \text{Induction equation -> Lie-transport:} \quad \frac{\partial}{\partial t} \beta(\boldsymbol{r}, t) + \mathcal{L}_{\boldsymbol{u}} \beta(\boldsymbol{r}, t) = 0 \end{split}$$

Topologies of Magnetic Fields

Hopf link

twisted field

trefoil knot

Borromean rings

magnetic braid

IUCAA knot

Interlocked Flux Rings

 $\tau = 4$

 $H_{\rm M}=0$

 $H_{\rm M} \neq 0$

Interlocked Flux Rings

IUCAA Knot and Borromean Rings

- Is magnetic helicity sufficient?
- Higher order invariants?

Borromean rings

IUCAA knot

 $H_{\rm M}=0$

(Candelaresi and Brandenburg 2011)

IUCAA = The Inter-University Centre for Astronomy and Astrophysics, Pune, India

Magnetic Energy Decay

Higher order invariants?

Reconnection characteristics

t = 70

t = 78

Magnetic Braid

(Wilmot-Smith 2010)

Periodic braid topologically equivalent to Borromean rings.

Separation into two twisted field regions.

Conserved invariants like fixed point index and field line helicity.

Stability criteria

constraintequilibriumWoltjer (1958):
$$\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$$
 $\boldsymbol{\nabla} \times \mathbf{B} = \alpha \mathbf{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$ $\boldsymbol{\nabla} \times \mathbf{B} = \underset{\checkmark}{\alpha(a, b)} \mathbf{B}$ constant along field line

V = total volume \tilde{V} = volume along magnetic field line

Taylor state not reached due to fixed point conservation.

(Yeates et al. 2011)

Fixed Point Index

Trace magnetic field lines from z_0 to z. mapping: $(x, y) \rightarrow \mathbf{F}_z(x, y)$ fixed points: $\mathbf{F}_1(x, y) = (x, y)$ **Color coding:** Compare (x, y) with $\mathbf{F}_1(x, y)$: $\mathbf{F}_1(x, y)$ $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y > y \quad \Longrightarrow \text{ red}$ $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y > y \quad \Box \qquad \text{yellow}$ $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \text{ green}$ (x, y) $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \mathsf{blue}$

(Yeates et al. 2011)

Fixed Point Index

Magnetic Braid Configurations

AAA (trefoil knot)

AABB (Borromean rings)

Magnetic Braid Configurations

(Prior and MacTaggart 2016)

Conclusions

- Magnetic helicity as constraint on plasma dynamics.
- Further topological constraint: fixed point index, field line helicity, quadratic helicities.
- Topology preserving relaxation of magnetic fields.
- Other topological invariants? Jones polynomials?

Field Line Tracing

Generalized flux function:

$$\mathcal{A}(x,y) = \int_{z=0}^{z=1} \mathbf{A} \cdot d\mathbf{l}$$

Reconnection rate:

$$\sum_{i} \frac{\mathrm{d}\mathcal{A}(\mathbf{x}_i)}{\mathrm{d}t}$$

Knots as Braids

AAA, trefoil knot

AbAbAb, Borromean rings

Helical Dynamos

