Stabilizing Effect of Magnetic Helicity on Magnetic Cavities in the Intergalactic Medium

Simon Candelaresi, Fabio Del Sordo

Intergalactic Bubbles

(Fabian et al. 2000)

Bubbles rise buoyantly through density difference.

Bubbles' age is several tens of millions of years.

Kelvin-Helmholtz Instability

(GRAHAMUK/Wikimedia Commons)

Bubbles should get disrupted.

What is the reason for their stability?

Magnetic Helicity

Conservation of magnetic helicity:

$$\lim_{\eta o 0} rac{\partial}{\partial t} \int m{A} \cdot m{B} \; \mathrm{d}V = 0 \qquad \eta = ext{magnetic resistivity}$$

Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Can magnetic helicity stabilize intergalactic cavities?

Numerical Experiments

Full resistive magnetohydrodynamics simulations with the PencilCode.

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$$

$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\nabla\left(\frac{\ln T}{\gamma}\ln\rho\right) + \mathbf{J}\times\mathbf{B}/\rho - \mathbf{g} + \mathbf{F}_{\mathrm{visc}}$$

$$\frac{\partial \ln T}{\partial t} = -\mathbf{U} \cdot \nabla \ln T - (\gamma - 1) \nabla \cdot \mathbf{U} + \frac{1}{\rho c_V T} \left(\nabla \cdot (K \nabla T) + \eta \mathbf{J}^2 + 2\rho \nu \mathsf{S} \otimes \mathsf{S} + \zeta \rho (\nabla \cdot \mathbf{U})^2 \right)$$

$$\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\nabla\cdot\mathbf{U}$$

stratified medium

hot, under-dense bubble

 \mathbf{F}_{ξ}

Initial Condition: Beltrami Field

$$\mathbf{A} = f(r)A_0 \begin{pmatrix} \cos(yk) + \sin(zk) \\ \cos(zk) + \sin(xk) \\ \cos(xk) + \sin(yk) \end{pmatrix}$$

smoothing function: $f(r) = 1 - (r/r_{\rm b})^{n_{\rm smooth}}$

inside bubble: $\nabla \times \mathbf{A} \approx k\mathbf{A}$

Thermal Emission

Temperature Iso-Surfaces

Bubble Coherence

Helical magnetic fields can stabilize the bubbles.

Conclusions

- Magnetic helicity as constraint on plasma dynamics.
- Magnetic helicity leads to stability at small magnetic energy.
- Possible mechanism to stabilize intergalactic bubbles.
- Outlook: Test with geometrically different field (spheromak).

(arXiv:1912.12723)

simon.candelaresi@gmail.com