Field line winding and tangling in the solar corona

Simon Candelaresi, David Pontin, Anthony Yeates, Gunnar Hornig, Paul Bushby

Magnetic Fields in the Corona

NASA (TRACE)

(Thiffeault et al. 2006)

Tangling leads to strong perpendicular gradients.

Study the tangling of solar magnetic field lines.

Magneto-Convection Simulations

Helmholtz-Hodge Decomposition: $\mathbf{u}=\mathbf{u}_{\mathrm{i}}+\mathbf{u}_{\mathrm{c}}+\mathbf{u}_{\mathrm{h}}$

$$
\mathbf{u}_{\mathrm{i}}=\nabla \times\left(\psi_{z}\right), \quad \mathbf{u}_{\mathrm{c}}=\nabla \phi, \quad \mathbf{u}_{\mathrm{h}}=\nabla \chi
$$

Active Region 10930

Helmholtz-Hodge Decomposition

Consider this region.
12th of December 2006, 14:04 UT, (Tsuneta et al. 2008, Fisher \& Welsch 2008)

Blinking Vortex Benchmark

\Rightarrow
Repeated applications of the blinking vortex motion.

\Rightarrow
World lines correspond to 3d braided magnetic field (pig tail, E3).

Winding Number

$$
\Theta \frac{\mathrm{d} \mathbf{r}_{1}(t)}{\mathrm{d} t}=\mathbf{u}\left(\mathbf{r}_{1}(t), t\right) \quad \frac{\mathrm{d} \mathbf{r}_{2}(t)}{\mathrm{d} t}=\mathbf{u}\left(\mathbf{r}_{2}(t), t\right)
$$

normalized averaged winding number:

$$
\Omega\left(\mathbf{r}_{1}, T\right)=\frac{\Theta\left(\mathbf{r}_{1}, T\right)}{q(T)}
$$

Winding Number

blinking vortex

simulation

Winding Number

Degrade resolution of simulations to observations.
Same result as before degradation.
Velocity extraction a bigger factor (Welsch 2007).

Finite Time Topological Entropy

Finite Time Topological Entropy

High tangling for simulations and observations.
It takes 3.059h for the photosphere to get as tangled as for one cycle of the blinking vortex motion.

Conclusions

- High degree of winding possible.
- High degree of entanglement
- Tangled magnetic field stores free energy to be released in reconnection events.
- Resolution less important than velocity extraction method (Welsch 2007).

$$
\begin{aligned}
& \text { ArXiv: 1807.10188 } \\
& \text { ApJ, 864:157 (2018) }
\end{aligned}
$$

Winding Number

normalization: $q(T)=\frac{1}{l_{\text {granules }} L_{x} L_{y}} \int_{0}^{T}|\mathbf{u}| \mathrm{d} x \mathrm{~d} y \mathrm{~d} t$

$$
\mathbf{u}=\mathbf{u}_{\mathrm{i}}+\mathbf{u}_{\mathrm{c}}+\mathbf{u}_{\mathrm{h}}
$$

Compressional part does not significantly contribute to the winding.

Passive Scalar

initial profile: $c(x, y)=x+y$

High mixing of passive scalar.

No clear scale due to turbulent motions.

