Field line winding and tangling in the solar corona

Simon Candelaresi, David Pontin, Anthony Yeates, Gunnar Hornig, Paul Bushby

Magnetic Fields in the Corona

NASA (TRACE)

(Thiffeault et al. 2006)

Tangling leads to strong perpendicular gradients.

Study the tangling of solar magnetic field lines.

Magneto-Convection Simulations

(Bushby et al. 2012)

Helmholtz-Hodge Decomposition: $\mathbf{u} = \mathbf{u}_{\mathrm{i}} + \mathbf{u}_{\mathrm{c}} + \mathbf{u}_{\mathrm{h}}$

$$\mathbf{u}_{\mathrm{i}} = \nabla \times (\psi_z), \quad \mathbf{u}_{\mathrm{c}} = \nabla \phi, \quad \mathbf{u}_{\mathrm{h}} = \nabla \chi,$$

Active Region 10930

Consider this region.

12th of December 2006, 14:04 UT, (Tsuneta et al. 2008, Fisher & Welsch 2008)

Blinking Vortex Benchmark

Repeated applications of the blinking vortex motion.

World lines correspond to 3d braided magnetic field (pig tail, E3).

$$\frac{d\mathbf{r}_1(t)}{dt} = \mathbf{u}(\mathbf{r}_1(t), t) \quad \frac{d\mathbf{r}_2(t)}{dt} = \mathbf{u}(\mathbf{r}_2(t), t)$$

$$\Theta(\mathbf{r}_1, \mathbf{r}_2, t) = \arctan\left(\frac{y_2(t) - y_1(t)}{x_2(t) - x_1(t)}\right)$$

$$\Theta(\mathbf{r}_1, T) = \frac{1}{L_x L_y} \int_0^T \int_{(0,0)}^{(L_x, L_y)} \frac{d\Theta(\mathbf{r}_1, \mathbf{r}_2, t)}{dt} d\mathbf{r}_2 dt$$

(Prior & Yeates 2014)

normalized averaged winding number:
$$\Omega(\mathbf{r}_1,T) = \frac{\Theta(\mathbf{r}_1,T)}{q(T)}$$

Degrade resolution of simulations to observations.

Same result as before degradation.

Velocity extraction a bigger factor (Welsch 2007).

Finite Time Topological Entropy

Finite Time Topological Entropy

High tangling for simulations and observations.

It takes 3.059h for the photosphere to get as tangled as for one cycle of the blinking vortex motion.

Conclusions

- High degree of winding possible.
- High degree of entanglement
- Tangled magnetic field stores free energy to be released in reconnection events.
- Resolution less important than velocity extraction method (Welsch 2007).

ArXiv: 1807.10188 ApJ, 864:157 (2018)

normalization:
$$q(T) = \frac{1}{l_{\text{granules}} L_x L_y} \int_0^{-1} |\mathbf{u}| \, dx \, dy \, dt.$$

$$\mathbf{u} = \mathbf{u}_{\mathrm{i}} + \mathbf{u}_{\mathrm{c}} + \mathbf{u}_{\mathrm{h}}$$

Compressional part does not significantly contribute to the winding.

Passive Scalar

initial profile: c(x, y) = x + y

High mixing of passive scalar.

No clear scale due to turbulent motions.