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Abstract

The broad variety of ways in which magnetic helicity affects astrophysical
systems, in particular dynamos, is discussed.

The so-called α effect is responsible for the growth of large-scale magnetic
fields. The conservation of magnetic helicity, however, quenches the α effect,
in particular for high magnetic Reynolds numbers. Predictions from mean-
field theories state particular power law behavior of the saturation strength of
the mean fields, which we confirm in direct numerical simulations. The loss
of magnetic helicity in the form of fluxes can alleviate the quenching effect,
which means that large-scale dynamo action is regained. Physically speaking,
galactic winds or coronal mass ejections can have fundamental effects on the
amplification of galactic and solar magnetic fields.

The gauge dependence of magnetic helicity is shown to play no effect in
the steady state where the fluxes are represented in form of gauge-independent
quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-
gauge. Magnetic helicity transport, however, is strongly affected by the gauge
choice. For instance the advecto-resistive gauge is more efficient in transport-
ing magnetic helicity into small scales, which results in a distinct spectrum
compared to the resistive gauge.

The topological interpretation of helicity as linking of field lines is tested
with respect to the realizability condition, which imposes a lower bound for the
spectral magnetic energy in presence of magnetic helicity. It turns out that the
actual linking does not affect the relaxation process, unlike the magnetic helic-
ity content. Since magnetic helicity is not the only topological variable, I con-
duct a search for possible others, in particular for non-helical structures. From
this search I conclude that helicity is most of the time the dominant restriction
in field line relaxation. Nevertheless, not all numerical relaxation experiments
can be described by the conservation of magnetic helicity alone, which allows
for speculations about possible higher order topological invariants.
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1. Introduction

Je n’ai fait celle-ci plus longue
que parce que je n’ai pas eu le loisir

de la faire plus courte.

I would have written a shorter letter,
but I did not have the time.

Blaise Pascal

Asking astronomers about the relevant forces for the dynamics of astro-
physical objects the only answer is often “gravity”. Gravity is undoubtedly
responsible for the structures we see at scales of the Universe. But what is of-
ten forgotten is the effect of electromagnetic forces, which often goes beyond
radiation pressure. For accretion discs magnetic fields lead to angular momen-
tum transport and ensure quick spin-downs. The presence of magnetic fields in
planets and stars provides shielding from charged and energetic particles and
suppresses convection. Starspots and sunspots, which are highly magnetized
regions, are ares of reduced radiation.

Observations of magnetic fields in the universe date as far back as 364
BCE, when Chinese astronomers observed sunspots for the first time. Of
course back then little was known about their magnetic nature. It was thanks
to Galileo Galilei that sunspots were recorded more systematically, which has
been continued ever since and created an almost complete record spanning four
centuries. Their occurrence was explained in 1908 by George Ellery Hale who
first obtained Zeeman measurements from the Sun’s surface, which revealed
strong magnetic fields of ca. 2 kG on sunspots. This strong field suppresses
convective motions that would otherwise replenish the surface with hot mate-
rial. The temperature in those regions drops due to thermal radiation which
makes them appear dark. Typical life times are between days and up to 3
months during which proper motion can be observed.

The occurrence of sunspots is not random in time, nor are they randomly
distributed on the Sun’s surface. Within 11 years the total number observed
varies between maximum and minimum during which almost no spots are ob-
served (Fig. 1.1, lower panel). We can trace this behavior back to the first
systematic observations in 1610. The only period during which this striking
rule does not apply is the so-called Maunder minimum from ca. 1650 to 1700,
during which almost no sunspots were observed. At the beginning of each cy-
cle the first sunspots appear at latitudes of around 30 degrees. As time evolves
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Figure 1.1: Longitudinally averaged area covered by sunspots (upper panel).
Percentage of the visible hemisphere covered with sunspots (lower panel).
(NASA 2012)

they emerge closer to the equator. Plotting the longitudinal average of the area
covered with sunspots gives a butterfly-like diagram (Fig. 1.1, upper panel).
Today we can measure all three spatial components of the Sun’s magnetic field.
One of the most striking revelations from these magnetograms is the reversal
of the sign of the magnetic field after every 11 years. This 22 years periodic
cycle is the magnetic cycle (Fig. 1.2).

Explaining the occurrence of the Sun’s magnetic field first led to the pri-
mordial theory, which claims that the creation of the field happened during the
Sun’s formation from an interstellar gas cloud. Since the hot gas is highly con-
ducting it is plausible that via an induction mechanism potential energy can be
partially transformed into magnetic energy. Of course one would need to take
into account the full energy balance, which further includes kinetic and ther-
mal energy. Both the large scale and the strength of the field can be explained
by this theory. But it falls short in clarifying the cyclic behavior and how it
could have outlived 4.5 billions of years of resistive decay.

To address those drawbacks, a mechanism is necessary that constantly re-
generates magnetic fields on scales which we observe on the Sun. At the same
time it has to explain how the cyclic behavior comes about. The most success-
ful and generally accepted theory is the dynamo theory, which explains how
turbulent motions in a conducting medium give rise to magnetic fields of ener-
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Figure 1.2: Polar magnetic field strength at various latitudes for the Sun. The
magnetic active regions coincide with the sunspots. This diagram is often re-
ferred to as the magnetic butterfly diagram. (NASA 2012)

gies comparable to the energies of the motions and scales similar to the system
size. Turbulent dynamos provide a convincing mechanism for the Sun’s mag-
netic field. Other than the Sun also galactic fields and fields of accretion discs
can be explained by this mechanism (Brandenburg et al., 1995).

An important ingredient of turbulent dynamos is kinetic helicity of the tur-
bulent motions, i.e. the scalar product of the velocity with the vorticity. As
a result the magnetic field will be helical as well, with helicities of opposite
signs in the small and large scales. The presence of small-scale magnetic he-
licity, however, reduces the production of large-scale magnetic energy, which
is produced by small-scale helical motions. For a closed system this means that
the field reaches saturation only on time scales determined by the resistivity,
which are much longer than the relevant dynamical time scales for astrophysi-
cal systems. A quantitative study of the dynamo’s behavior for a closed system
is presented in Paper I, where we investigate conditions under which dynamo
action occurs and how the saturation state depends on relevant parameters.
This work was motivated by recent findings about the onset of large-scale dy-
namo action of Pietarila Graham et al. (2012) that did not agree with standard
models of Blackman and Brandenburg (2002), confirmed in Käpylä and Bran-
denburg (2009).

Open systems can reduce the amount of magnetic helicity via fluxes. This
reduces the dynamo quenching coming from the presence of small-scale mag-
netic helicity significantly (Paper II). In practical terms it means that astro-
physical dynamos must have some mechanism by which helicity is shed. For
the Sun one candidate is coronal mass ejections, which frequently occur where
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Figure 1.3: Mutually linked magnetic fluxed tube make up one of the simplest
helical field configurations.

the field is strongly twisted, i.e. helical.

Magnetic helicity density is the scalar product of the magnetic vector po-
tential AAA and the magnetic field BBB. Potentials are always defined up to a gauge,
which can be chosen freely. That means that magnetic helicity density and
its fluxes are dependent on the gauge choice. The conditions under which a
dynamo is excited must, however, not depend on the gauge. In Paper III and
Paper IV both magnetic helicity fluxes and transport are investigated. Luck-
ily for the dynamo, the physically relevant quantities, like the time averaged
fluxes in the statistically steady state, turn out to be gauge-independent.

To illustrate magnetic helicity, one can think of magnetic flux tubes, which
are twisted like a helix, with both ends connected. Helices are not the only
helical fields one can think of. Two flux tubes, which are mutually linked,
constitute a helical configuration as well (Fig. 1.3). Letting such fields evolve
leads to a reduction of magnetic energy through various channels. Resistivity
slowly destroys magnetic energy, while reconnection, i.e. braking and connect-
ing magnetic field lines, has a faster effect. Reconnection is, however, a violent
process and hence not favored in field relaxation. If we cannot rely on recon-
nection being effective enough, a helical system of the kind of interlocked flux
rings cannot freely evolve due to the conservation of mutual linkage. This re-
striction is captured in the realizability condition, which gives a lower bound
for the magnetic energy in presence of magnetic helicity. Unfortunately the
overly simple picture of linked field lines can be broken by an idealized non-
helical configuration composed of linked field lines. What happens then is part
of Paper V, where the relaxation of linked, helical and non-helical fields is
investigated.

Magnetic helicity is not the only quantity, which quantifies the field’s topo-
logical structure. There exists an infinite number of topological invariants.
Whether or not such invariants could give restrictions on the relaxation is stud-
ied in Paper VI, in which helical and non-helical knots and links are investi-
gated.
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The approach taken in this work is purely theoretical. No observations
have been consulted to make quantitative comparisons with the results. Yet,
observations provided the impulse for all the investigations. All the setups are
investigated within the framework of magnetohydrodynamics, which provides
a reasonable description of the physical systems. Solving these non-linear
partial differential equations is done numerically using the PENCIL CODE1, a
high-order finite difference PDE solver.

1http://pencil-code.googlecode.com
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2. Framework

O studianti, studiate le matematiche,
e non edificate sanza fondamenti.

Therefore O students study mathematics
and do not build without foundations.

Leonardo da Vinci

2.1 Magnetohydrodynamics

Through observations of turbulent motions we know that astrophysical plasma
are viscous media. The dynamics of viscous flows is described via the Navier-
Stokes equations, which couple the velocity field with the density, the pressure
and the viscous forces. Charge separation makes the media highly conduct-
ing, which brings the Maxwell equations into play which couple the charges
and currents with the electromagnetic field. Combining the Navier-Stokes and
Maxwell equations gives the equations of magnetohydrodynamics (MHD) for
conducting fluids. The coupling between the velocity and electromagnetic field
comes from the Lorentz force.

Differing inertia of electrons and positive ions make plasma sophisticated
media to study, in particular in relativistic environments. For those systems
studied here the inertia of the charge carrying particles can be neglected. As
a consequence any charge separation will be balanced within fractions of the
here relevant time scales, which leaves the medium charge neutral. In addition
the conductivity of the medium is high enough such that the electric field can
be neglected. Further, the maximum velocities of such media are often much
less than the speed of light. Hence, the displacement current can be neglected
in favor of the electric current density JJJ from Ohm’s law.

Under these realistic simplifications the MHD equations for an isothermal
medium read:

∂AAA
∂ t

= UUU×BBB−ηµ0JJJ, (2.1)

DUUU
Dt

= −c2
s ∇∇∇ lnρ + JJJ×BBB/ρ +FFFvisc + fff , (2.2)

Dlnρ

Dt
= −∇∇∇ ·UUU , (2.3)
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with the magnetic vector potential AAA, the velocity UUU , the magnetic field1 BBB =
∇∇∇×AAA, the magnetic diffusivity η , the isothermal speed of sound cs, the fluid
density ρ , the electric current density JJJ = ∇∇∇×BBB/µ0, the external forcing fff
and the advective time derivative D

Dt =
∂

∂ t +UUU ·∇∇∇. In the following discussions
I will use units for which µ0 = 1. The viscous force is given by

FFFvisc = ρ
−1

∇∇∇ ·2νρSSS, (2.4)

with the traceless rate of strain tensor

Si j =
1
2
(Ui, j +U j,i)−

1
3

δi j∇∇∇ ·UUU (2.5)

for a viscous monatomic gas with the viscosity ν . For all the systems in this
work isothermality is assumed where the pressure is given as p = ρc2

s . Any-
thing else would change the equation of state and lead to an additional equation
which involves internal energies in the form of temperature.

2.2 Amplification of Magnetic Fields

Typical strengths of magnetic fields observed in stars and galaxies are of the
order of the equipartition value, i.e. their energies are comparable with the ki-
netic energy of the turbulent motions and scales comparable with the system
size. A mechanism is needed to explain the efficient conversion between ki-
netic and magnetic energies such that the resulting magnetic field has sizes
similar to the dimensions of the system. The large scales should be contrasted
to the scales of the turbulent eddies. Similar to the electromagnetic dynamo,
where mechanical work is transformed into electromagnetic energy, in astro-
physical objects there exists a similar mechanism for transforming energies.
The relevant induction equation for this case is equation (2.1).

The energy input for the turbulent motions can be easily explained to come
from convection where heat provides a source for kinetic energy on large scales
through the buoyant rise of material. In a nearly inviscid fluid large-scale mo-
tions of sufficient velocities are quickly transformed into small-scale motions
via the turbulent cascade, where kinetic energy is dissipated into heat again.
Given a weak magnetic seed field, the induction mechanism provides a way of
converting motions into magnetic energy by inducing currents. The properties
of these motions are crucial in the dynamo mechanism, as well as the environ-
ment of the system. The induced currents will lead to a loss of magnetic en-
ergy via Joule dissipation. The characteristics of this energy budget (Fig. 2.1)

1Common usage is to call BBB the magnetic field. In this work I will do so as well,
although strictly speaking the magnetic field is HHH and BBB is the magnetic flux density.
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Figure 2.1: Energy budget for e.g. the solar dynamo (Brandenburg and Sub-
ramanian, 2005). The thermal energy ET is supplied from the solar interior in
form of radiation (Lbot), which heats the convection zone. Thermal radiation
Ltop at the Sun’s surface provides a sink of energy, which balances Lbot in global
thermal equilibrium. Buoyancy WC cools the system down by creating motions
EK, which are resistively dissipated (QV). The Lorentz force WL is responsible
for transforming kinetic into magnetic energy EM, which decays resistively via
Joule heating QJ. In the case of accretion discs also the potential energy EP plays
an important role.

strongly depend on various parameters and boundary conditions. Some of the
magnetic energy can be in the form of large-scale magnetic fields, and their
dynamics is probably best understood in the framework of mean-field theory.

2.2.1 Mean-Field Theory

As there is a clear separation of scales between the observed magnetic fields
and the turbulent motions they can be treated as own entities, while any interac-
tion between them might be determining for the dynamo process. In mean-field
theory (Steenbeck et al., 1966; Krause and Rädler, 1971; Krause and Rädler,
1980) only the evolution of the mean quantities is considered, where every
field BBB is split into its mean BBB and fluctuating part bbb like

BBB = BBB+bbb. (2.6)
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How the mean BBB is computed is not relevant, as long as it satisfies the Reynolds
rules:

BBB1 +BBB2 = BBB1 +BBB2, BBB = BBB, bbb = 0 (2.7)

BBB1BBB2 = BBB1BBB2, BBBbbb = 0, ∂µBBB = ∂µBBB, µ = 0,1,2,3. (2.8)

Commonly, averages over one or two spatial coordinates are taken for the mean
fields, e.g.

BBB(z, t) =
∫

BBB(xxx, t) dx dy. (2.9)

What happens on scales of the turbulent motions which are not resolved, has
to be modeled in a way which strongly depends on the problem. Transport
coefficients then incorporate any effects coming from the small-scale fields and
affect the mean fields. They directly appear in the evolution equations for the
large-scale fields. Any back reaction from the large to the small scales does
not need to be excluded. In modern mean-field models such back reactions
are modeled by providing evolution equations for the transport coefficients
together with the mean-fields.

The mean-field form of the induction equation (2.1) is easily obtained by
applying the Reynolds rules:

∂tBBB = η∇
2BBB+∇∇∇× (UUU×BBB+E), ∇∇∇ ·BBB = 0, (2.10)

with the electromotive force (EMF) E = uuu×bbb.
In order to dispose of fluctuating quantities in the EMF, it has to be mod-

eled via the mean-fields. Which mean-field quantities are used depends on the
relevant physics of the system, e.g. whether it is a rotating system. The from
of E also depends on whether or not the system is isotropic. Probably the
simplest form is by making E dependent only on the mean magnetic field BBB
(Steenbeck et al., 1966):

Ei(xxx, t) = E
(0)
i (xxx, t)+

∫ ∫
Ki j(xxx,xxx′, t, t ′)B j(xxx− xxx′, t− t ′) d3x′ dt ′, (2.11)

with the Einstein summation convention for double indices and the integration
kernel Ki j(xxx,xxx′, t, t ′). A Taylor expansion for BBB simplifies its form to

Ei = αi jB j +bi jk
∂B j

∂xk
+ . . . , (2.12)

where it is also assumed that BBB affects the EMF only instantaneously and lo-
cally. The coefficients are then integrals of the kernel:

αi j =
∫ ∫

Ki j(xxx,xxx′, t, t ′) d3x′ dt ′, (2.13)

bi jk =
∫ ∫

Ki j(xxx,xxx′, t, t ′)(x′k− xk) d3x′ dt ′. (2.14)
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For homogeneous and isotropic systems the EMF attains the often used form

E = αBBB−ηt∇∇∇×BBB, (2.15)

αi j = αδi j, (2.16)

bi jk = ηtεi jk, (2.17)

with the turbulent magnetic diffusivity ηt ≈ urms/(3kf), where urms is the root
mean square of the velocity and kf the inverse length scale of the turbulence.
Combining equation (2.15) with the mean-field induction equation (2.10) leads
to the induction equation for the mean magnetic field

∂BBB
∂ t

= ∇∇∇× (αBBB)+ηT∇
2BBB, (2.18)

where ηT = η +ηt is the total magnetic diffusivity, which has been assumed
to be constant. It is readily clear that, given an initial seed magnetic field of
any strength, the presence of α will enhance BBB, which leads to its exponential
growth. A back reaction of BBB on α is needed in order to stop the growth and
make the field saturate. The form of α and its characteristics during saturation
is discussed in section 2.2.2.

2.2.2 The α Effect

Modeling the form of α varies depending on the physical system. One of the
simplest forms reads (Moffatt, 1978; Krause and Rädler, 1980)

α = αK =−τωωω ·uuu/3, (2.19)

with the small-scale vorticity ωωω = ∇∇∇× uuu and the correlation time of the tur-
bulence τ ≈ 1/(urmskf). This implies that small-scale helical motions uuu are
responsible for the exponential growth of the large-scale magnetic field BBB.

Without any quenching mechanism BBB would grow indefinitely. A back
reaction of BBB on α when the system is close to equipartition is necessary. The
algebraic quenching forms

α = αK(1−BBB
2
/B2

eq), (BBB
2� B2

eq), (2.20)

with the equipartition field strength Beq and

α =
αK

1+BBB
2
/B2

eq

(2.21)

were introduced heuristically by Roberts and Soward (1975) and Ivanova and
Ruzmaikin (1977), respectively. The dynamics of magnetized media strongly
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depends on the magnetic Reynolds number

ReM =
urms

ηkf
. (2.22)

Based on simulations, Vaĭnshteĭn and Cattaneo (1992) discovered the impor-
tance of the magnetic Reynolds number for the quenching. The resulting
quenching is similar to equation (2.21)

α =
αK

1+ReMBBB
2
/B2

eq

(2.23)

and is called catastrophic α quenching, because for the Sun ReM ≈ 109 and
galaxies ReM≈ 1015, so α would be too small to be meaningful for even |BBB|�
Beq.

The construction of α provided by equation (2.19) did not take into account
the conservation of magnetic helicity, which is true for astrophysical systems
and dynamically relevant times. Under this constraint the total α (Pouquet
et al., 1976) is

α = αK +αM =−τωωω ·uuu/3+ τ jjj ·bbb/(3ρ). (2.24)

So it is composed of the kinetic αK and magnetic αM. The presence of cur-
rent helicity αM will reduce α and provide an efficient quenching mechanism,
which proves to be also dependent on the magnetic Reynolds number ReM (see
section 2.2.4). As αM grows it will balance αK and the dynamo saturates. For
a system in a steady state equation (2.23) can be regained if the mean current
density vanishes (Brandenburg and Subramanian, 2005).

2.2.3 α2 Dynamo

In absence of any mean velocity field UUU the growth of the dynamo is purely
powered by the α effect. The induction equation for the mean magnetic field
has the simple form of equation (2.18). As long as the mean magnetic field is
so small that the Lorentz force does not provide any significant back reaction
on the fluid, equation (2.18) can be linearized. One can search for solutions of
the form

BBB(t) = ℜ
(
B̂BB(k)exp(ikkk · xxx+λ t)

)
, (2.25)

which results in the eigenvalue problem

λ B̂BB(k) =



−ηTk2 −iαkz iαky

iαkz −ηTk2 −iαkx

−iαky iαkx −ηTk2


 B̂BB(k), (2.26)
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Figure 2.2: Dispersion relation for the mean-field α2 dynamo, with the growth
rate λ in dependence of the wave number. The critical wave number for dynamo
action is kcrit = α/ηT (Brandenburg and Subramanian, 2005).

with the eigenvectors B̂BB(k) and growth rates (roots) λ (Moffatt, 1978)

λ0 =−ηTk2, λ± =−ηTk2±|αk|. (2.27)

Depending on the value of α different modes get more or less strongly excited.
The strongest excited mode is for kmax =±α/(2ηT) (Fig. 2.2).

Injection of small-scale kinetic helicity leads to the creation of helical
small-scale magnetic fields. Since the total magnetic helicity has to be con-
served, a helical large-scale field arises with opposite helicity. As time evolves,
the scale of the mean field becomes larger (Frisch et al., 1975; Léorat et al.,
1975) until it reaches the size of the system. At the end of the saturation the
magnetic energy spectrum shows two characteristic humps, one at the forc-
ing scale, i.e. the scale of the turbulent motion, and another at the scale of the
system (Brandenburg, 2001).

2.2.4 Magnetic Helicity Conservation

Magnetic helicity conservation is a crucial aspect for the saturation behavior of
the large-scale magnetic field in dynamos. Astrophysically relevant cases for
which helicity is conserved are closed systems and systems in which fluxes of
helicity are so small that they are irrelevant on the time scales of interest. The
presence of magnetic helicity not only slows down the saturation of the mean
magnetic field, but also determines its saturation amplitude.

For a closed system the evolution equation of the mean magnetic helicity
is

d
dt

H ′M =
d
dt
〈AAA ·BBB〉=−2η〈JJJ ·BBB〉, (2.28)
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where 〈.〉 denote volume averages. In the steady state H ′M does not change in
time. Splitting the field in mean and fluctuating parts results in the steady state
condition

〈JJJ ·BBB〉=−〈 jjj ·bbb〉. (2.29)

For a helically driven system the magnetic field and current density are par-
tially helical:

∇∇∇×BBB =±εmkmBBB, ∇∇∇×bbb =∓εfkfbbb, (2.30)

with the wave numbers of the small and large scales, km and kf, and the frac-
tional helicities εm and εf. The different signs in BBB and bbb come from total
current helicity conservation Eq. (2.29), which causes the helically driven dy-
namo to create helicities of opposite sign in the large and small scales. From
equation (2.30) we obtain

〈JJJ ·BBB〉=±εmkm〈BBB2〉, 〈 jjj ·bbb〉=∓εfkf〈bbb2〉. (2.31)

Hence in the steady state we have

〈BBB2〉= εmkf

εfkm
〈bbb2〉. (2.32)

Or for the fully helical case, i.e. εm = εf = 1:

〈BBB2〉= kf

km
〈bbb2〉. (2.33)

As the separation of scales kf/km increases, the saturation strength of the
mean magnetic field increases with respect to the small-scale field. The con-
servation of magnetic helicity slows down the saturation of the mean magnetic
field. The time which is needed to reach this state is dictated by the magnetic
resistivity. Close to saturation the small- and large-scale current helicities can-
cel (see equation (2.28)). The current helicities can be expressed in terms of
the magnetic helicity

〈JJJ ·BBB〉 = k2
m〈AAA ·BBB〉, (2.34)

〈 jjj ·bbb〉 = k2
f 〈aaa ·bbb〉. (2.35)

The small-scale magnetic field saturates with the end of the kinematic phase.
This means that 〈 jjj · bbb〉 is approximately constant, but 〈AAA ·BBB〉 is not, so one
neglects the time derivative of the small-scale magnetic helicity in equation
(2.28), which for the steady state means

d
dt

H ′M ≈
d
dt
〈AAA ·BBB〉=−2ηk2

m〈AAA ·BBB〉−2ηk2
f 〈aaa ·bbb〉, (2.36)
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Figure 2.3: Time evolution of the mean magnetic energy 〈BBB2〉 and the energy
in the small-scale fields 〈bbb2〉 for an α2 dynamo. The small-scale field grows
exponentially and saturates within dynamical times. The large-scale field grows
exponentially as well, after which its growth is dominated by the magnetic resis-
tivity, which means a long resistive saturation phase (Brandenburg and Dobler,
2002).

which has the solution

〈AAA ·BBB〉(t) = 〈aaa ·bbb〉(t) k2
f

k2
m

(
1− e−2ηk2

m(t−tsat)
)
. (2.37)

As long as the dynamical time scale is much shorter than the resistive time
scale, which for physically relevant problems is mostly the case, the small-
scale magnetic helicity 〈aaa · bbb〉 can be considered time independent close to
saturation. For the mean magnetic field this means

〈BBB2〉(t) = 〈bbb2〉 εfkf

εmkm

(
1− e−2ηk2

m(t−tsat)
)
. (2.38)

The saturation time of the mean magnetic field, therefore, depends on the mag-
netic resistivity η (Fig. 2.3) as

τ = (2ηk2
m)
−1. (2.39)

Astrophysical systems have such low values for η that τ exceeds the age of
the object or even the age of the Universe. The most promising way to reduce
the saturation time is by allowing for magnetic helicity fluxes (Blackman and
Field, 2000; Kleeorin et al., 2000) as they are discussed in Paper II.
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2.3 Gauge Freedom for Magnetic Helicity

Magnetic helicity is defined with the magnetic vector potential AAA. For any
potential there exists the freedom of choosing a gauge. The magnetic field BBB
in terms of its vector potential AAA is BBB = ∇∇∇×AAA. Adding the gradient of a scalar
field φ to AAA does not change BBB:

BBB′ = ∇∇∇× (AAA+∇∇∇φ) = ∇∇∇×AAA = BBB, (2.40)

since ∇∇∇×∇∇∇φ = 0. Commonly used gauges include the Coulomb gauge, where
∇∇∇ ·AAA = 0, and the resistive gauge where the induction equation for AAA reads

∂AAA
∂ t

=UUU×BBB+η∇∇∇
2AAA. (2.41)

With the gauge freedom magnetic helicity density can change as well:

AAA ·BBB→ AAA ·BBB+∇∇∇φ ·BBB. (2.42)

Total magnetic helicity is in general gauge dependent too:
∫

AAA ·BBB dV →
∫

AAA′ ·BBB dV +
∫

∇∇∇φ ·BBB dV (2.43)

=
∫

AAA′ ·BBB dV +
∫

F
φBBB · d fff , (2.44)

where at the last step Gauss’ theorem was used to transform the volume inte-
gral into a surface integral with surface normal fff . As long as the component
of BBB normal to the bounding surface vanishes the magnetic helicity is gauge
independent. Alternatively, periodic boundary conditions have the same result.
Fluxes of magnetic helicity are gauge dependent too. From equation (2.1) the
magnetic helicity flux can be derived as

FFFh = AAA× (UUU×BBB)+η∇∇∇φ × JJJ. (2.45)

A gauge-invariant definition of the magnetic helicity is the relative mag-
netic helicity (Berger and Field, 1984). It is relative to a reference field BBBref =
∇∇∇×AAAref:

Hrel =
∫
(AAA+AAAref) · (BBB−BBBref) dV, (2.46)

with BBBref = ∇∇∇φ and the boundary condition n̂ · BBBref = n̂ · BBB, where n̂ is the
normal vector at the surface.

Physically the gauge choice has no effect on the dynamics. On the other
hand it will be shown that the presence of magnetic helicity fluxes does af-
fect the evolution of the dynamo. In Paper III and Paper IV this apparent
contradiction will be addressed.
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2.4 Magnetic Field Relaxation and Stability

2.4.1 Relaxed States

Freely decaying magnetic fields try to develop a state of minimal magnetic
energy. The evolution is, however, restricted. The presence of conserved
quantities, most notably the magnetic helicity, constitute severe constraints.
Finding the minimum of the magnetic energy under the constraint of constant
magnetic helicity is a simple variational problem first investigated by Woltjer
(1958). The resulting magnetic field obeys

∇∇∇×BBB = αBBB, (2.47)

with constant α , thus constitutes a linear force-free field.
A more restrictive constraint was used by Taylor (1974), where the mag-

netic helicity along each field line has to be conserved. For an ergodic field,
where one field line fills the whole space, the two restrictions are equivalent.
For laboratory fields confined in tori, however, ergodic field lines may not nec-
essarily exist. Instead one can think of a finite or infinite set of distinct field
lines. In that case the minimal energy state is a non-linear force-free state

∇∇∇×BBB = λ (a,b)BBB, (2.48)

with λ (a,b) varying between field lines, which are parameterized by a and b.

2.4.2 Frozen-in Magnetic Fields

For astrophysical objects magnetic resistivity is small enough, such that on
dynamically relevant time scales the magnetic field can be considered frozen
into the fluid (Batchelor, 1950; Priest and Forbes, 2000). Any magnetic field
is transported with the fluid. This implies that the magnetic flux through any
surface C does not change, since both fluid and magnetic field move jointly
(Fig. 2.4). Flux freezing is a concept used in both, the flux transport dynamos
(Choudhuri et al., 1995; Charbonneau et al., 1999) and the enhancements of
magnetic energy via the stretch, twist and fold mechanism (Vaĭnshteĭn and
Zel’dovich, 1972; Priest and Forbes, 2000).

2.4.3 Realizability Condition

The presence of magnetic helicity has important implications for the stability
of the field. For a non-zero helicity spectrum HM(k), the lowest value of the
spectral magnetic energy EM(k) that can be attained is given by the realizability
condition (Arnold, 1974; Moffatt, 1978)

EM(k)≥ k|HM(k)|/2. (2.49)
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Figure 2.4: As the fluid evolves the surface C1 gets distorted into the shape C2.
Because the magnetic field is frozen in for low magnetic resistivity the magnetic
flux through surface C2 is unchanged (Priest and Forbes, 2000, p. 24).

Together with the spectral magnetic energy EM(k) also the total magnetic en-
ergy is bound by

EM ≥
∫

k|HM(k)|/2 dk. (2.50)

In that context the minimum value for the correlation length can be defined as
(Tevzadze et al., 2012)

lmin
corr = |HM|/(2EM). (2.51)

2.4.4 Topological Interpretation

A colorful interpretation of magnetic helicity is the mutual linkage of magnetic
field lines. For instance two magnetic field lines can be linked into each other
once (Fig. 1.3) or several times. The number of mutual linkage, i.e. the number
the tubes wind around each other, is directly proportional to the total magnetic
helicity (Moffatt, 1969; Moffatt and Ricca, 1992)

HM =
∫

V
AAA ·BBB dV = 2nφ1φ2, (2.52)

with the magnetic fluxes φ1 and φ2 through the magnetic field lines and the
number of mutual linkage n. The picture also works for flux tubes with finite
width but without internal twist or self-linking.

With this picture of magnetic helicity the realizability condition can be in-
terpreted as the reluctance of the field to brake its field lines and change its
topology. Hence the magnetic field provides a topological invariant, which not
only qualifies the configuration (helical/non-helical), but even gives a quanti-
tative measure for the linking of the field.
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Figure 2.5: Magnetic field lines for the configuration used by Yeates et al. (2010)
corresponding to the color mapping in Fig. 2.7.

2.4.5 Topology Beyond Magnetic Helicity

Magnetic helicity is not the only topological quantity which is conserved for
low magnetic resistivity. Invariants of order three and four in the magnetic field
were suggested by Ruzmaikin and Akhmetiev (1994), which are non-zero for
field configurations without magnetic helicity, which makes them intriguing
quantities to test decay properties with. The practical usage is, however, lim-
ited since they are defined for separate flux tubes and have not been expressed
for arbitrary fields, like the linking number for magnetic helicity.

A more practical topological invariant, which is conserved for low mag-
netic diffusivity, is the fixed points index (see, e.g., Yeates et al. (2010)). It is
defined for fields with a preferential direction, like toroidal tokamak fields or
fields with a positive component in the z-direction (Fig. 2.5).

For such fields a mapping (x,y)→ FFF(x,y) can be defined between two
surfaces, where the field lines start and end. Fixed points are those values for
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Figure 2.6: Neighborhood of fixed points with different color mappings. The
left fixed point has positive sign, while the right has negative sign.

(x,y) for which the mapping is onto itself, i.e. FFF(x,y) = (x,y). They are signed
and can be either +1 or−1. For a continuous mapping there is a neighborhood
for each fixed point in which it is the only fixed point. Further, there exist
points in this neighborhood for which the following inequalities hold:

Fx > x, Fy > y, (2.53)

Fx < x, Fy > y, (2.54)

Fx < x, Fy < y, (2.55)

Fx > x, Fy < y. (2.56)

Assigning a different color for each case gives the field line mapping of
the field. The sign results from the sequence of the colors (Fig. 2.6). The sum
over all fixed points gives the fixed point index, which is a conserved quantity
in low resistivity MHD (Brown, 1971):

T = ∑
i

ti, (2.57)

with the sign of the ith fixed point ti.
Even for simple magnetic fields (Fig. 2.5, right panel) the color mapping

can be complex (Fig. 2.7, left panel). The complexity comes about in a simi-
lar fashion as in the two-dimensional stirring in fluids (Boyland et al., 2000),
where stirring corresponds to braiding of field lines. The number of initial fixed
points for the configuration in Fig. 2.5 (right panel) is 26. The fixed points in-
dex, however, is 2. After resistive time evolution fixed points of opposite signs
merge, while the fixed point index is conserved (Fig. 2.7, right panel).

The conservation of the fixed point index imposes an additional constraint
in magnetic field relaxation. In practice it turns out that the field does not reach
the Taylor state and retains higher energies.
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Figure 2.7: Color mapping for the configuration illustrated in Fig. 2.5 at initial
time (left) and after some time evolution (right) (Yeates et al., 2010).

2.5 Observing Helical Magnetic Fields

The gauge dependence of magnetic helicity density makes it difficult to mea-
sure it directly. As a proxy the current helicity JJJ ·BBB is often used (Yeates et al.,
2008). Its measurement is still not easy, since only recently all three compo-
nents of BBB could be measured at the solar surface. Prior to that, force-free
assumptions were used for field line extrapolation (Gibson et al., 2002).

For helical large-scale structures no direct measurements of BBB are neces-
sary to infer the helical nature of magnetic fields on, e.g., the Sun’s surface.
Emerging coronal loops often carry hot plasma with them, which is trapped
in the magnetic flux tubes. The plasma can only move along the field lines
due to strong Lorentz forces (Fig. 2.8). Often those loops show a pig tail like
shape, which suggests large-scale magnetic helicity. Force-free extrapolations
support the observation of twisted magnetic loops (Fig. 2.9). The force free
assumption is, however, only valid at heights of 400 km and above the photo-
sphere (Metcalf et al., 1995), which casts some doubt on such extrapolations,
although they reproduce the loops observed in X-ray observations.

Helical structures have implications for the dynamics of the Sun’s plasma.
It has been shown that N- and S-shaped helical regions are more likely to result
in coronal mass ejections (Canfield et al., 1999). The Sun, therefore, possibly
sheds magnetic helicity, which has far reaching implications for the dynamo
mechanism.
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Figure 2.8: SOHO observations of coronal mass ejections. The image to the
right was taken in May 7 2010.

Figure 2.9: Force-free extrapolation of the Sun’s surface magnetic field from
data taken August 21 1999 (Gibson et al., 2002).
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3. Magnetic Helicity Conser-
vation and Fluxes in Turbulent
Dynamos

Do you include turbulence?

popular saying

3.1 Magnetic Helicity Conservation in α2 Dynamos

For the helically driven α2 dynamo the growth rate of the different modes de-
pends on the forcing α and the wave number k as (Blackman and Brandenburg,
2002)

λ = αk−ηTk2 = (Cα −1)ηTk2, (3.1)

where Cα = αK/(ηTk) is the dynamo number for the α2 dynamo. The onset
value for dynamo action is obviously at Cα = 1. In the limit of high conductiv-
ity (Moffatt, 1978; Krause and Rädler, 1980) we have αK =−(τ/3)〈ωωω ·uuu〉 and
ηt = (τ/3)〈uuu2〉. This allows us to reformulate the expression for the dynamo
coefficient Cα such that it reads

Cα =−〈ωωω ·uuu〉
k〈uuu2〉ι , (3.2)

with the correction factor ι = ηT/ηt. With the normalized helicity for the
small-scale field εf = 〈ωωω ·uuu〉/(kf〈uuu2〉) we can write

Cα =−εfkf

kmι
. (3.3)

The normalized kinetic helicity has to be contrasted with the relative helicity,
also called fractional helicity, which is defined in a similar fashion as

ε̃f =
〈ωωω ·uuu〉

ωrmsurms
, (3.4)

with the root mean square values of the vorticity ωrms =
√
〈ωωω2〉 and velocity

urms =
√
〈uuu2〉. From equation (3.3) one sees that the critical value of the nor-

malized helicity for dynamo action scales like εf ∝ (kf/km)
−1 with the scale

separation ratio kf/km:

ε
crit
f = ιεm

(
kf

km

)−1

, (3.5)
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Figure 3.1: Critical values for the fractional helicity fh in dependence of the scale
separation value together with a power law fit (dashed line) and the analytical
prediction from mean-field theory given by equation (3.5) (dotted line) (Pietarila
Graham et al., 2012).

with the normalized kinetic helicity of the large-scale field

εm =
〈JJJ ·BBB〉
km〈BBB2〉

. (3.6)

Conservation of magnetic helicity still allows for an increase of magnetic
helicity at small and large scale if they have opposite signs (Seehafer, 1996; Ji,
1999). In its continuous creation the large scales become even larger (Frisch
et al., 1975) until the dynamo saturates with strong magnetic fields in scales of
the system size (Blackman and Brandenburg, 2002; Brandenburg et al., 2002).
The saturation mean magnetic energy Bsat in dependence of the dynamo num-
ber Cα for a closed or periodic system is easily obtained from mean-field theory
(Blackman and Brandenburg, 2002):

B2
sat/B2

eq = (|Cα |−1) ι . (3.7)

Contrary to this established theory a different scaling was recently found
by Pietarila Graham et al. (2012), who predicted a dependence of the form

ε
crit
f ∝ (kf/km)

−3 (3.8)

for the critical normalized helicity (Fig. 3.1). The injection of kinetic helicity
causes the magnetic field to be helical with magnetic helicity in the small and
large scales of opposite sign. As long as the system is closed or periodic, as it is
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the case in (Pietarila Graham et al., 2012), the build-up of small-scale magnetic
helicity reduces the α effect and the growth of the large-scale magnetic field.
In practice this means that after a short exponential growth the mean magnetic
field continues growing slowly and saturates on a resistive time scale, which
can be large compared to the dynamical time scales for astrophysical systems.

The discrepancy in Pietarila Graham et al. (2012) with the semi analytical
predictions from equation (3.3) comes from the method used in determining
Ccrit

α . As they only looked at the growth rate of the largest mode at k = 1
shortly after the exponential phase at a small fraction of the resistive times, the
field will be contaminated by small-scale contributions. The large-scale field
becomes dominant at later times when nonlinear effects suppress the small-
scale field.

To shed light on this issue, we investigate in Paper I the saturation charac-
teristics of a large-scale dynamo in the non-linear regime for a helically driven
dynamo in a periodic cube shaped domain, similar to Pietarila Graham et al.
(2012). The equations to be solved for this problem are the usual resistive,
viscous MHD equations for an isothermal medium:

∂

∂ t
AAA = UUU×BBB−ηJJJ, (3.9)

D
Dt

UUU = −c2
s ∇∇∇ lnρ +

1
ρ

JJJ×BBB+FFFvisc + fff , (3.10)

D
Dt

lnρ = −∇∇∇ ·UUU , (3.11)

where the forcing function fff is delta correlated in time and provides the energy
input. The applied magnetic Reynolds numbers are around 6 in a first set of
cases with scale separation values of up to 80. In the latter part we use ReM
values between 80 and 320 at a scale separation value of kf/km = 5. The
magnetic Prandtl number PrM = η/ν is unity if nothing else is stated.

As kinetic energy is injected the magnetic field in both, small- and large-
scales grows exponentially during the kinematic phase. Since the system is
isotropic, either the xy, xz or yz averaged magnetic field will be dominant
(Fig. 3.2), while the other modes die out. Helicity conservation causes the
field to saturate slowly on resistive times, which means the magnetic energy M
behaves like (Brandenburg, 2001)

M(t) = M0−M1e−t/τ (3.12)

in the resistive phase, where M0 is the saturation energy and M1 the initial
energy of the simulation run. The resistive time for saturation is given as

τ = (2ηk2
m)
−1. (3.13)
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Figure 3.2: Normalized mean magnetic energies in resistive times. The strongest
growing mode is the xz average 〈BBB〉xz (dashed line). The xy (solid) and yz (dash-
dotted) averages die out. The dotted line represents 〈BBB2〉+τd〈BBB2〉/dt, which was
used to compute the saturation magnetic field strength without letting the system
saturate.

To speed up the calculation of the saturated magnetic field strength a short cut
is taken, where the saturation magnetic energy is computed as the time average
of

M̃0(t) = 〈BBB2〉+ τd〈BBB2〉/dt, (3.14)

which comes from taking the time derivative of equation (3.12).
For different scale separation ratios and normalized magnetic helicities the

mean saturation magnetic energy is determined (Fig. 3.3). As predicted by
equation (3.7) the saturation magnetic energy behaves linearly with the dy-
namo number Cα . Further, the critical value for large-scale dynamo action to
start (Ccrit

α = 1) is approximately reproduced. For the critical value we find
Ccrit

α ≈ 1.2, which results in a critical value for the normalized helicity

ε
crit
f ≈ 1.2ι(kf/km)

−1 = 1.7(kf/km)
−1, (3.15)

where we use an averaged magnetic Reynolds number that leads to an averaged
ι ≈ 1.41.

For fixed scale separation ratio, equation (3.7) together with equation (3.3)
predict a linear dependence of the saturation energy on the normalized helicity.
We plot the normalized magnetic energy for various scale separation ratios in
dependence of εf and make linear fits (Fig. 3.4), from which we can extrapolate
the critical values εcrit

f ≈ 1.7(kf/km)
−1. The extrapolated values for εcrit

f agree
well with the theory (Fig. 3.5) and the values extracted from Fig. 3.3.

The theoretical predictions for the closed α2 dynamo are verified in direct
numerical simulations. In order to refute the findings by Pietarila Graham
et al. (2012), their parameters have to be accommodated in our investigations.
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Figure 3.3: Normalized saturation energy of the mean magnetic field in depen-
dence of Cα for various scale separation values. The dashed line is the theoretical
prediction given by equation (3.7).

Therefore, high magnetic Reynolds numbers between 80 and 320 are used
with magnetic Prandtl numbers 1 and 100. In this case the scale separation
ratio is fixed to kf/km = 5. The dependence of the normalized magnetic energy
(Fig. 3.6, for PrM = 1) is shown to behave similarly to the case with ReM =
6. For higher magnetic Prandtl numbers, however, the slope is higher. This
behavior can be explained by different values for the equipartition strength Beq,
which is supposed to become smaller for increasing PrM, due to the shifted
dissipation range. Any different behavior at magnetic Reynolds numbers of
1500, as used by Pietarila Graham et al. (2012), is not to be expected. As a
consequence we can refute their findings.

In summary, the theoretical predictions coming from mean-field consider-
ation (equations (3.5) and (3.7)) are well confirmed for the closed α2 dynamo,
which constitutes one of the simplest possible dynamo setups and is often used
as reference. The findings by Pietarila Graham et al. (2012) are at variance,
most likely because their large-scale dynamo was contaminated by the small-
scale dynamo. The present investigation about the non-linear behavior of the
large-scale dynamo provides an important confirmation of the general theory.

3.2 Magnetic Helicity Fluxes

The injection of small-scale magnetic helicity causes the small- and large-scale
magnetic helicity to grow with opposite sign. The presence of small-scale
magnetic helicity hf = aaa ·bbb causes the total α effect to diminish (Gruzinov and
Diamond, 1994), such that the growth of the large-scale magnetic field gets
quenched (see Paper I). Fluxes of this quantity could alleviate this quenching
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Figure 3.4: Normalized saturation energy of the mean magnetic field in depen-
dence of εf for various scale separation values. Equation (3.5) predicts a linear
dependence of 〈BBB2〉/B2

eq on εf, which is shown in the linear fits (lines).

by reducing its value. There are various ways of creating such fluxes (Kleeorin
and Rogachevskii, 1999; Vishniac and Cho, 2001; Subramanian and Branden-
burg, 2004). Not all of them help in alleviating catastrophic α quenching. In
Paper II we discuss the most promising type of flux (Blackman and Field,
2000).

Quenching of the α effect becomes more pronounced as the magnetic
Reynolds number increases such that for physically relevant values of ReM any
large-scale dynamo becomes impossible to drive. That is why it is called catas-
trophic α quenching. To address the question whether magnetic helicity fluxes
have any significant effect on the alleviation of the α quenching mechanism
high magnetic Reynolds numbers are required of e.g. 105. Such simulations
require computational resources, which are currently not available. To circum-
vent this shortcoming we employ the mean-field theory in one dimension and
employ magnetic Reynolds numbers in the range of ReM = 2 to ReM = 105.
The mean quantities are spatial averages in x- and y-direction. Any change of
variables only occurs in the z-direction, which can be physically interpreted as
the vertical distance from the galactic mid-plane or the vertical distance from
the equator of the Sun. The domain is limited to the range 0< z<H. Because
we expect the magnetic field to develop either a symmetric or antisymmetric
mode (Krause and Rädler, 1980) the boundaries at z = 0 are chosen accord-
ingly such that the field is symmetric or antisymmetric about the mid-plane
depending on the type of flux. In physical terms, the x- and y-components can
be regarded as poloidal and toroidal components of the fields.

The driving, or energy input, comes from an imposed kinetic α effect,
which has a linearly increasing profile switching sign across the equator (Fig. 3.7,
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Figure 3.5: Minimal values for the normalized kinetic helicity for which large-
scale dynamo action occurs in dependence of the scale separation value.

upper panel):
αK = α0z/L, (3.16)

with the size of the domain L. The total α effect is the sum of the kinetic and
magnetic α effects. The latter is proportional to the current helicity and can
be well approximated by the magnetic helicity, since the developing field is
expected to be helical:

αM =
τ

3
jjj ·bbb/ρ ≈ τ

3
k2

f aaa ·bbb/ρ, (3.17)

with the turbulence correlation time τ , the small-scale current density jjj, mag-
netic field bbb and magnetic vector potential aaa and the average fluid density ρ .

The evolution equations for the magnetic helicity in the small and large
scales are

∂hm

∂ t
= 2E ·BBB−2ηJJJ ·BBB−∇∇∇ ·FFFm, (3.18)

∂hf

∂ t
= −2E ·BBB−2η jjj ·bbb−∇∇∇ ·FFF f, (3.19)

with the magnetic helicity fluxes for the small and large scales FFF f and FFFm given
as

FFFm = EEE×AAA, FFF f = eee×aaa, (3.20)

where EEE is the electric field. A term of the form E ·BBB in equations (3.18) and
(3.19) does not occur in the equation for the total magnetic helicity, because
this term is only a property of the mean-fields. It makes sure that magnetic
helicity is exchanged between the two scales. Equations (3.17) and (3.19)
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Figure 3.6: Normalized magnetic energy in the steady state in dependence of Cα

for various magnetic Reynolds numbers and magnetic Prandtl numbers together
with fits (dashed and solid line) and the theoretical prediction from equation (3.7)
(dotted line).

give rise to the evolution equation of αM, the dynamical quenching formula
(Kleeorin and Ruzmaikin, 1982), expressed as

∂αM

∂ t
=−2ηtk2

f

(
E ·BBB
B2

eq
+

αM

ReM

)
− ∂

∂ z
Fα , (3.21)

where Fα is the z-component of the flux for αM given as

Fα =
µ0ρηtk2

f
B2

eq
FFF

z
f . (3.22)

Apart from equation (3.21) we also solve the induction equation for the mean
magnetic field

∂tBBB = η∇∇∇
2BBB+∇∇∇× (UUU×BBB+E) (3.23)

and the EMF
E = αBBB−ηtJJJ. (3.24)

It should be pointed out that no momentum or continuity equation are solved,
which is chosen for simplicity and to screen off any other non-linear effects.

The form of the fluxes in equation (3.21) is chosen to be either of advective
or diffusive nature. For the advective fluxes we impose a mean velocity field,
which increases linearly with z (Fig. 3.7, lower panel) of the form UUU z =U0z/H,
with the scale height H, which is taken from the model used by Shukurov
et al. (2006). The motivation comes from observations of galactic outflows
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Figure 3.7: Profile of the kinetic α effect (upper panel) and the velocity profile
for the case of fluxes through wind (lower panel).

where the outflow speed increases approximately linearly with distance from
the galactic center (Shapiro and Field, 1976; Bregman, 1980). The wind drags
the magnetic field along with magnetic helicity, which is being shed at the open
boundaries. The form of open boundaries condition is Ax,z = Ay,z = Az = 0.
This is frequently called vertical field condition, which becomes clear when
writing it in terms of the magnetic field:

BBB = ∇∇∇×AAA =



−Ay,z

Ax,z

0


 . (3.25)

For the diffusive fluxes there is no need for open boundaries, which is why
they are taken to be closed (perfect conductor), i.e. Ax = Ay = 0. Any fluxes
are supposed to occur through the equator and are of the form

Fα =−κα

∂αM

∂ z
, (3.26)

with a diffusion coefficient κα . Since the outer boundaries are closed, the only
place where diffusive fluxes can occur is at the equator.

The given setup is one of the most simple ones for which dynamo action
can be expected. Under the given conditions a mean magnetic field should
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Figure 3.8: x- and y-component of the mean magnetic field for the case of an
imposed wind (left panels) and no wind but diffusive fluxes through the equator
(right panel) in dependence of time and the distance from the equator.

Figure 3.9: Magnetic helicity fluxes of the small- (dashed line) and large-scale
fields (solid line) in dependence of the distance from the equator for the case
of open boundaries and advective fluxes (left panel) and closed boundaries and
diffusive fluxes (right panel).

develop after a time which is well below the resistive time. Indeed, a strong
large-scale magnetic field develops and in both cases it shows an oscillatory
behavior (Fig. 3.8).

Since the dynamo is working, it is now of interest to know what the effect
of the fluxes is, in particular with respect to the dynamical α quenching. The
advective fluxes efficiently transport small-scale magnetic helicity out of the
domain (Fig. 3.9, left panel). The rate of field transport is chosen low enough
not to transport too much magnetic energy out of the dynamo region, which
would destroy any amplification effect. It is strong enough to alleviate the
catastrophic α quenching and allow the dynamo to work even at high magnetic
Reynolds numbers (Fig. 3.10, left panel). Diffusive fluxes through the equator
(Fig. 3.9, right panel) allow to alleviate the catastrophic α quenching as well
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Figure 3.10: Mean magnetic field strength at saturation in dependence of the
magnetic Reynolds number ReM for the case with wind (left panel, solid line)
and with diffusive fluxes (right panel, solid line). The cases without any fluxes
are represented by dashed lines. Advective an diffusive fluxes efficiently alleviate
the catastrophic quenching. Without fluxes catastrophic quenching makes the
saturation field drop like Re−1/2

M .

(Fig. 3.10, right panel). For physical systems like the Sun this implies that as
long as it shuffles around magnetic helicity between both hemispheres, such
that the small-scale magnetic helicity diminishes, catastrophic α quenching
can be alleviated.

Contrary to the algebraic quenching formalisms, where a heuristic formula
is proposed for the decrease of α as the mean-field saturates, the dynamical
quenching formalism provides a more self-consistent approach. The allevia-
tion of the quenching comes not unexpectedly. As long as the advective wind
does not remove too much magnetic energy it merely sheds the magnetic helic-
ity and the α effect does not get quenched. This case is of physical relevance
for the galactic dynamo for which small-scale magnetic helicity can be shed
through the observed galactic winds. The diffusive fluxes are relevant for sys-
tems like our Sun where there exists a sign reversal for the kinetic helicity
across the equator. As consequence also the magnetic helicity switches signs
(Blackman and Brandenburg, 2003). Fluxes out of the Sun can be mediated
by coronal mass ejections, which occur at regions where the magnetic field is
helical. For example, Warnecke et al. (2011) found that in a spherical shell
dynamo, the flux through the surface from ejections is almost twice as large as
the flux through the equator.
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4. Gauge Dependencies

Take advantage of the ambiguity in the world.
Look at something and think what else it might be.

Roger von Oech

4.1 Magnetic Helicity Fluxes

The gauge dependence of magnetic helicity fluxes makes the findings in sec-
tion 3.2 worth revisiting. Since the alleviation of catastrophic α quenching
is a physical effect it should not depend on the gauge. By choosing different
gauges we investigate which the physically relevant quantities for the large-
scale dynamo are. Further, we now consider direct numerical simulations
where we can actually measure the diffusive helicity fluxes, which previously
were merely imposed, and determine their strength compared to resistive terms
and in dependence of the magnetic Reynolds number. The aim of Paper III is
to first reproduce such diffusive fluxes through the equator (mid-plane) of the
domain in direct numerical simulations. By varying the gauge it is observed
how that flux changes and how it can retain its physical significance.

Uncurling the induction equation for the magnetic field leaves the freedom
to choose a scalar field Ψ, which leaves the physics untouched. The induction
equation has then the form

∂AAA
∂ t

=UUU×BBB−ηJJJ−∇∇∇Ψ. (4.1)

Choosing the form of Ψ fixes the gauge. In the time evolution equation Ψ

appears only in the flux term like

FFF = EEE×AAA+ΨBBB. (4.2)

Here we consider three different gauges. For the Weyl gauge Ψ = 0. In the
resistive gauge the gauge field Ψ is expressed in terms of the magnetic vector
potential as Ψ = η∇∇∇ ·AAA, which adds a diffusion component to equation (4.1).
The pseudo-Lorentz gauge is equivalent to the Lorentz gauge, except that the
speed of light c is replaced by the isothermal speed of sound cs:

∂Ψ

∂ t
=−c2

s ∇∇∇ ·AAA. (4.3)
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Figure 4.1: Snapshots of the y component of the magnetic field at the domain’s
periphery for different times. The field reversal occurs at about two resistive
times. The time unit is τres = (urmsk2

m/(3kf))
−1.

The equations, which we solve are the same as for the periodic α2 dynamo
in section 3.1, given by equations (3.9)–(3.11), except that the induction equa-
tion is enhanced by the gradient of the gauge field Ψ. Similar to the setup
used in section 3.2 we impose a forcing function fff in the momentum equation,
which drives the dynamo. Here, fff is again a helical function, which gives rise
to turbulent helical motions. The equator, or mid-plane, of the system is de-
fined by the profile of the amplitude of fff , which is linearly increasing in z and
zero at the mid-plane (z = 0). This setup resembles somewhat the Sun where
kinetic helicity switches sign across the equator. All the boundaries are chosen
to be periodic. The domain is a cuboid with sizes Lx = Ly = Lz/2, such that
both halves are cubes of the same size.

Our setup is motivated by previous work by Mitra et al. (2010) in wedge-
shaped domains with helical forcing, which switched sign across the equator.
The resulting large-scale magnetic field showed oscillations and equatorward
migration. This kind of dynamo produces oscillating magnetic fields of oppo-
site sign in both hemispheres (Fig. 4.1), which is what is seen in Fig. 3.8 in the
prefect conductor case.

Unlike in the one-dimensional case, there is no other constraint at the equa-
tor, but the vanishing of fff . The previously imposed diffusive small-scale mag-
netic helicity fluxes should arise naturally in the three dimensional case. To
measure them we need to decompose the field into a small-scale and large-
scale part, as it is used in mean-field theory (§ 2.2.1). By fully expanding the
terms occurring in the evolution equation for the magnetic helicity for the small
and large scales

∂thm = 2E ·BBB−2ηJJJ ·BBB−∇∇∇ ·FFFH
m, (4.4)

∂thf = −2E ·BBB−2η jjj ·bbb−∇∇∇ ·FFFH
f , (4.5)

we can monitor each term of equation (4.5). We are interested in the Fickian
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diffusion term of the form
FFFH

f =−κf∇∇∇hf, (4.6)

with the diffusion coefficient κf. It should be noted that for the fluxes in equa-
tion (4.5) not only Fickian diffusion is possible, though the other options need
a large-scale velocity field (advective fluxes) or large-scale shear (Vishniac and
Cho, 2001). The gradient of the magnetic helicity density ∇∇∇hf/m, can be mea-
sured from the simulations.

Measuring the small-scale magnetic helicity fluxes FFFH
f through the equator

for the three different gauges at a specific time reveals some significant devia-
tion from each other (Fig. 4.2, upper panel). Instead of fluxes at a given time
instance, the physically relevant quantity is the flux at the statistically steady
state. For that we need to average over fluctuations which is denote as 〈.〉t .
Doing so leads to

〈∂thf〉t = 0, (4.7)

〈∇∇∇ ·FFFH
f 〉t =−2〈E ·BBB〉t −2〈ηJJJ ·BBB〉t . (4.8)

Since the RHS of equation (4.8) is gauge-invariant the LHS has to be so as
well. Hence FFFH

f is gauge-invariant for the statistically steady state. This is
reproduced in the lower panel of figure 4.2.

Comparing the terms of the helicity evolution equation of the small-scale
field in equation (4.5) (Fig. 4.3, upper panel) reveals that away from the bound-
aries the time-averaged terms 2E ·BBB and 2η jjj ·bbb balance very well. This im-
plies that the fluxes are small and the major part of the magnetic helicity van-
ishes resistively. This is true for the magnetic Reynolds number ReM = 68.
The reminder of the change in helicity comes through the fluxes (Fig. 4.3,
middle panel). The fluxes themselves can be well approximated via Fickian
diffusion fluxes, see figure 4.3 lower panel, where we compare the inferred
Fickian diffusion with the actual fluxes.

In the present investigation magnetic Reynolds numbers between 2 and 68
are used. In that range the fluxes do not show any clear tendency and can be
considered to be independent of ReM, while the terms 2E ·BBB and 2η jjj ·bbb scale
with ReM. For the fluxes to play any significant role during the dynamo process
they need to be comparable to the term 2E ·BBB. Before that no significant allevi-
ation of catastrophic α quenching can be observed (Fig. 4.4, upper panel). For
higher magnetic Reynolds numbers it is expected that diffusive fluxes increase
such that they become determining and α quenching gets alleviated. This hap-
pens for ReM at which κf∇

2aaa ·bbb≈ 2η jjj ·bbb. The magnetic Reynolds number for
which the terms become comparable is ReM≈ 4600 (see Paper III for details).
This result is based on linear extrapolations. Recent findings (Del Sordo et al.,
2012) have shown that this breaks down and that the diffusive flux divergence
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Figure 4.2: Small-scale magnetic helicity fluxes at a random time (upper panel)
and their time average (lower panel) for the three gauges. The time averaged
quantities are clearly gauge independent.

becomes approximately independent of ReM for ReM ≈ 100 and above. For
even higher ReM the diffusive flux divergence approaches 2E ·BBB.

The gauge dependence of magnetic helicity fluxes is not physically rel-
evant in the statistically steady state, where fluxes are balanced by physical
quantities which do not depend on the gauge. Fickian diffusion gives a good
proxy for the total magnetic helicity flux. That shows that no other fluxes occur
in this particular setup. For low magnetic Reynolds numbers the segregation of
magnetic helicity in small- and large-scale parts, expressed in the 2E ·BBB term,
is not balanced by the fluxes. For high, and physically relevant ReM, we could
estimate that it will balance at ReM ≈ 4600. Simulations with such high ReM
have yet to be realized, but will shed more light on this topic (see Del Sordo
et al. (2012)).
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Figure 4.3: z profile of the terms of equation (4.5) (upper two panels) and a
comparison between the actual magnetic helicity fluxes and the Fickian diffusion
term from equation (4.6).

4.2 The Advecto-Resistive Gauge

In Paper IV properties of the magnetic helicity density and its fluxes are ex-
amined in a gauge belonging to the advective gauge-families. They are called
advective, because velocity shows up as a term which advects the magnetic
helicity (Hubbard and Brandenburg, 2011). This should be contrasted to e.g.
the resistive gauge, where no such term arises. Gauge-dependent magnetic he-
licity fluxes mean gauge dependent magnetic helicity transport. The way this
physically important quantity is transported in a turbulent environment is part
of the present discussion and contrasted with the transport of a passive scalar.
Numerical analysis for the advective gauge proves to lead to numerical insta-
bilities, which do not arise in other gauges. To still investigate this gauge a
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Figure 4.4: Dependence of the normalized magnetic energy in the small and
large scale with the magnetic Reynolds number (upper panel). Kinetic, cur-
rent and magnetic helicity, each appropriately normalized, in dependence of ReM
(lower panel).

universal approach is used for stabilizing the numerical experiment. For that
the numerically stable resistive gauge is used for the evolution, while simulta-
neously solving an evolution equation for the gauge field, which provides the
transformation.

In order to distinguish quantities in different gauges a superscript is used,
e.g. AAAr for the resistive gauge. The induction equation for the magnetic vector
potential in the popular resistive gauge reads

∂AAAr

∂ t
=UUU×BBB+η∇∇∇

2AAAr, (4.9)

where the magnetic resistivity η is here assumed to be constant in space. This
gauge is numerically stable and commonly used for simulations. Its stability
arises form the diffusion term, which reduces any artificial small-scale fluctu-
ations or discontinuities.
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In the advective gauge the induction equation reads
DAa

i
Dt

=−U j,iAa
j−ηJi. (4.10)

Its form is similar to the gauge, which will be mainly discussed here, which is
the advecto-resistive gauge with induction equation

DAar
i

Dt
=−U j,iAar

j +η∇∇∇
2Aar

i . (4.11)

Any transformation between two gauge-dependent fields can be achieved by
adding a gauge field. The transformation between the resistive and advecto-
resistive gauge reads

AAAar = AAAr +∇∇∇Λ
r:ar, (4.12)

with the gauge field Λr:ar. The superscript r:ar signifies the original and target
gauge. Looking at the induction equation (4.11) it becomes clear why this is
called advecto-resistive. It incorporates the advective nature of the advective
gauge, as well as the resistive term from the resistive gauge.

Solving the equations in the advecto-resistive gauge leads to numerical
instabilities. Therefore we have to make use of the stable resistive gauge and
apply the gauge transformation Eq. (4.12) for computing any gauge-dependent
quantities in the advecto-resistive gauge. The field Λr:ar will then have to obey
its own evolution equation (see appendix B in Paper IV for the derivation):

DΛr:ar

Dt
=−UUU ·AAAr +η∇∇∇

2
Λ

r:ar. (4.13)

Applying equation (4.11) together with equation (4.13) is referred to as the Λ

method. Although the advecto-resistive gauge is numerically unstable, we will
use it in some simulations and discuss where the instability comes from.

Magnetic helicity transport is crucial in dynamo theory (see Paper I, Pa-
per II, Paper III and references therein). In both, the resistive and advecto-
resistive gauge, the time evolution of the magnetic helicity density is deter-
mined by a resistive term and fluxes given as

∂ha

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFFa, (4.14)

∂hr

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFF r, (4.15)

∂har

∂ t
= −2ηJJJ ·BBB−∇∇∇ ·FFFar, (4.16)

with the magnetic helicity fluxes FFFa, FFF r and FFFar given by

FFFa = haUUU +ηJJJ×AAAa, (4.17)

FFF r = hrUUU− (UUU ·AAAr +η∇∇∇ ·AAAr)BBB+ηJJJ×AAAr, (4.18)

FFFar = harUUU−η(∇∇∇ ·AAAar)BBB+ηJJJ×AAAar. (4.19)
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Fluxes of magnetic helicity in all cases appear as advective fluxes (hUUU) and
resistive fluxes (ηJJJ×AAA). In the limit of ideal MHD and incompressible fluids,
i.e. η = 0 and ∇∇∇ ·UUU = 0, equation (4.14) is formally the same as the evolution
of a passive scalar:

Dha

Dt
= 0. (4.20)

The resistive gauge breaks this analogy, caused by fluxes in the direction of
the magnetic field of the form UUU ·AAArBBB, called turbulently diffusive fluxes. The
varying nature of the fluxes is one issue addressed in Paper IV.

The solved equations are the momentum equation (2.2) with the helical
forcing term fff , the continuity equation (2.3) and the induction equation whose
form depends on the method and gauge. The isotropic forcing fff provides the
energy input and ensures a dynamo is working. For the induction equation we
either choose the purely resistive gauge with equation (4.9), the pure advecto-
resistive gauge with equation (4.11) or the resistive gauge combined with the
evolution equation for the gauge field Λ (Eq. (4.13)), which is used to compute
magnetic helicity and its fluxes via the transformation

har = hr +∇∇∇Λ ·BBB. (4.21)

Additionally the evolution of a passive scalar C

DC
Dt

= κ∇
2C, (4.22)

is solved to compare its dynamics with the magnetic helicity, where κ is the
diffusivity of the passive scalar. The triply periodic boundary conditions im-
posed lead to a slow saturation of the mean magnetic field.

The helical forcing fff injects kinetic energy, which gets transformed into
magnetic energy via the α effect. Together with the magnetic field also the
magnetic helicity increases (Fig. 4.5). Choosing to directly solve the induction
equations in the advecto-resistive gauge causes the simulation to develop high
gradients of AAA, which should not affect BBB, but numerically they do. The values
grow to such high values that the simulation stops. Changing the simulation’s
resolution does not have any significant effect on the stability. It is an intrinsic
property of the gauge choice.

The instability arises from numerically taking the derivative of AAAar in equa-
tion (4.11). The expansion of the Laplacian operator shows that there is a
hidden curl operator applied on the gradient of the gauge field Λr:ar of the form

∇∇∇
2AAAar = ∇∇∇(∇∇∇ ·AAAar)−∇∇∇× (∇∇∇×AAAr +∇∇∇× (∇∇∇Λ

r:ar)) . (4.23)

The curl of the gradient should of course vanish. Numerically, however, it does
not, which leads to an artificial increase of magnetic field in the small scales.
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Figure 4.5: Normalized root mean square value of the magnetic helicity for the
direct advecto-resistive gauge (solid red line) and the Λ method (dashed line)
together with a fit (solid green line).

As consequence also the velocity increases due to the Lorentz force and the
simulation crashes. Using the Λ method, this issue is circumvented.

The total magnetic helicity in this setup with periodic boundaries is gauge-
invariant. Its density distribution, however, is not. Any difference between the
resistive and advecto-resistive gauges on density distribution, in the absence
of compressibility effects, can only be caused by the fluxes, which is reflected
in the root mean square of the magnetic helicity hrms. For the resistive gauge,
in contrast to the advecto-resistive gauge, additional flux terms appear in the
form of (UUU ·AAAr)BBB, which can diminish the transport. Consequently, magnetic
helicity will be transported less efficiently into scales of the turbulent eddies
for the resistive, than for the advecto-resistive gauge. This effect increases as
the fluid Reynolds number increases. Highly varying concentrations mean an
increase of the root mean square value hrms. Indeed, we can reproduce this
feature for the advecto-resistive gauge (Fig. 4.6, left panel) and provide an
approximate law for its quantitative behavior given by

k1har

B2
rms

= cRe−a
M (1+bRe2a

M ), (4.24)

with the fit parameters a and b. This effect is absent for the resistive gauge
(Fig. 4.6, right panel).

We compare the dynamics of the passive scalar with the magnetic helicity
density by evaluating their spectra (Fig. 4.7). In the kinematic regime, where
resistive terms are negligible, the magnetic helicity spectrum shows a drop at
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Figure 4.6: Time averaged values of the normalized magnetic helicity for the
kinematic phase in dependence of the magnetic Reynolds number for different
Prandtl numbers. The advecto-resistive case (left panel) clearly shows a different
behavior (model by equation (4.24)) from the resistive case (right panel), which
shows a power law dependence.

high wave numbers, which is different from the advecto-resistive gauge. This
drop comes from the more effective way of dissipating high spatial variations
of AAA, due to the resistive term in the induction equation. This term is of course
also present in the advecto-resistive gauge, but due to the efficient transport of
helicity into smaller scales, thanks to the advective term, high k components
get constantly supplied from low k. This comparison holds true even for the
non-linear regime. There it can be seen that hr develops a peak at the forcing
scale kf, which is to be expected from dynamo theory where the magnetic field
peaks there. Of similar reasons is the peak of the passive scalar. The turbulent
helical fluid motions trap it into this scale. Since there is no way of transporting
C other than advection it retains its peak at the forcing scale kf. Because for
the advecto-resistive case there is helicity transport into smaller scales the peak
vanishes and we see a flatter profile.

In summary we present an effective way to circumvent numerical instabil-
ities arising form the gauge choice, by solving for an evolution equation for
the gauge field Λ. In this context one may ask why not solve directly for the
physical quantities and applying an inverse curl operator when computing he-
licities. One reason is the divergence freeness of the magnetic field (∇∇∇ ·BBB = 0),
which is automatically assured when solving for the magnetic vector potential
AAA. It makes it also easier to compute the magnetic helicity for which no inverse
curling is needed. The differing fluxes result in some interesting consequences
for the helicity transport. In the advecto-resistive gauge the co-moving local
magnetic helicity density remains closer to its initial value, except at small
scales where it leads to a high k tail (Fig. 4.7). The resistive gauge makes the
helicity evolve akin a passive scalar. It should be remembered that the only
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Figure 4.7: Power spectra for the magnetic helicities hr, har and the passive scalar
C for kf/k1 = 5. The additional transport term causes har to have a flatter profile
and higher values at high k, in contrast to hr.

distinction in time evolution between AAAr and AAAar comes from the gauge trans-
formation Eq. (4.13). So the difference in the transport comes solely from the
gauge field Λ.
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5. Topology

The characters emerge from my rather twisted mind.
That’s another enjoyable part of the job making stuff up.

Jonathan Kellerman

Two field configurations are topologically different if they cannot be trans-
formed one into another with a homeomorphic transformation. In other words,
without the aid of magnetic reconnection they cannot be converted into each
other. This does not mean that reconnection necessarily changes the topology
of the field. Even with reconnection the topology can be conserved. Topology
is to be contrasted with geometry, which describes the shape of the field.

Field line topology particularly affects relaxation processes (Berger and
Field, 1984; Ricca, 2008). Since the field cannot be shaped in any arbitrary
way, relaxation does not occur totally freely. This aspect, with connection to
magnetic helicity, is discussed in Paper V. Magnetic helicity is, however, not
the only quantifier for field line topology (Yeates and Hornig, 2012). There
exists an infinite number of topological invariants. Whether those can play any
role in field line relaxation is discussed in Paper VI.

5.1 Flux Linking and Magnetic Helicity

The most common way of quantifying the topology of magnetic fields is the
magnetic helicity (Moffatt, 1969), which gives a measure for the mutual link-
age of magnetic fields lines. Two mutually liked magnetic flux rings, which
do not possess any internal twisting nor are self-interlinked, are an instructive
example for the analogy between linkage and magnetic helicity (see Fig. 1.3).
It could be shown by Moffatt (1969) that the number of mutual linkage n is
related to the total magnetic helicity HM as

HM =
∫

V
AAA ·BBB dV = 2nφ1φ2, (5.1)

where φi are the magnetic fluxes through the field lines

φi =
∫

Si

BBB ·dSSS. (5.2)

Conservation of magnetic helicity for low magnetic resistivity, as it is the case
for astrophysical applications, makes it an ideal invariant, even when magnetic
reconnection occurs (Taylor, 1974).
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Figure 5.1: Isosurfaces of the magnetic energy for the helical linked (left panel),
non-helical linked (central panel) and unlinked (right panel) magnetic field con-
figuration. The direction of the magnetic field is pictured by the arrows.

With this colorful picture of the magnetic helicity it is obvious that with its
presence any relaxation must be impeded, as long as the system is not breaking
up field lines. This characteristics is captured in the realizability condition
Eq. (2.49), which imposes a lower limit on the magnetic energy in presence of
magnetic helicity. Of course one can make up non-helical configurations with
linked flux tubes. If their topology was conserved that property would need
to be captured in a higher order invariant (Ruzmaikin and Akhmetiev, 1994;
Komendarczyk, 2010). The question then is what is more important: the actual
topology (linking) or the magnetic helicity. This is addressed in Paper V.

As a showcase, three field configurations are investigated (Fig. 5.1). Two
of them consist of three interlinked magnetic flux rings of finite width and no
internal twisting. The reversal of the direction of the field in one of the two
outer rings changes the magnetic helicity content from an appreciable value to
zero. As reference configuration to compare with, we use the same three rings
without any linkage (Fig. 5.1, right panel).

The three magnetic field configurations are used as initial conditions. The
cross section and magnetic flux in the tubes is the same for all three rings.
The radii of the outer rings are R0 and for the inner ring is R = 1.2R0. As
profile for the magnetic field strength a Gaussian is used, which has the advan-
tage of being a smooth function. The relaxation characteristics is investigated
within the framework of resistive MHD. For that we solve the usual MHD
equations (2.1)–(2.3) without any forcing fff . The initial values of velocity and
density are UUU0 = 0 and ρ0 = 1. The initial magnetic flux through the tubes
is Φ = 0.1csR2

0
√

µ0ρ0, which is small enough to ignore compression effects
and consider the density as constant. Magnetic resistivity η is set to a value as
small as is numerically admissible for the sake of magnetic helicity conserva-

50



Figure 5.2: Magnetic stream lines after 4 Alfvénic times for the interlocked
triple-ring configurations. The non-helical case (left) loses most of its initial
structure, while the helical case (right) retains it and distinct tubes can still be
observed.

tion. To make sure magnetic helicity cannot escape, the domain boundaries are
assumed periodic. Time is measured in Alfvénic times, which in the present
cases is only a fraction of the resistive time:

TA =
√

µ0ρ0R3
0/Φ. (5.3)

As times evolves each outer ring shrinks due to magnetic tension and diffu-
sion. When the field lines touch local reconnection events occur which change
the shape of the field. For the non-helical interlocked field the initial struc-
ture vanishes after only a few Alfvénic times (Fig. 5.2, left panel), while for
the helical configuration the initial topology remains conserved (Fig. 5.2, right
panel).

During the relaxation magnetic energy gets lost into heat1 through recon-
nection events and resistive effects. The rate of loss depends on how fast the
system can attain its equilibrium energy. For the non-helical case it can be seen
that energy is dissipated quickly (Fig. 5.3) – in fact as quickly as for the non-
interlocked test configuration. The mere linking does apparently not hinder
the field to decay almost freely. For the helical case the realizability condition
imposes severe restrictions on the relaxation. In practice this means a slow
loss of magnetic energy on a resistive time scale on which also the magnetic
helicity decays.

In summary we can confirm the importance of the realizability condition
for relaxation processes. The naïve interpretation of linked flux tubes whose

1No energy equation is solved here. So the dissipated energy cannot be reused by
any means, like buoyancy.
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Figure 5.3: Magnetic energy evolution for the three rings configurations normal-
ized by their initial value. The helical interlocked configuration retains its energy
content more successfully (solid line), while the linked non-helical one (dashed
lines) and the non-linked case (dotted line) lose energy quickly at approximately
the same rate.

dynamics is restricted by the linkage does not hold. The only essential quantity
is the magnetic helicity.

5.2 Beyond Magnetic Helicity

Since there exists an infinite number of topological invariants it should be in-
vestigated if magnetic helicity is always the sole determinant in magnetic field
dynamics. To address this question we perform in Paper VI similar relax-
ation experiments as in Paper V with field configurations in the shape of knots
and links. The investigated magnetic field configurations are the n-foil knots,
the Borromean rings and the IUCAA knot (Fig. 5.4). Similar numerical ex-
periments have been carried out for ideal MHD (Maggioni and Ricca, 2009)
where no reconnection events could take place.

The family of n-foil knots, of which the trefoil knot is the simplest exam-
ple, has only helical members. By increasing their complexity with parameter
n, their magnetic energy increases, as well as the magnetic helicity. The Bor-
romean rings and IUCAA knot are both non-helical configurations. Yet, they
are topologically non-trivial and cannot be undone without braking the field
lines. For the Borromean rings there exists a higher order topological invari-
ant, which is conserved in ideal MHD, but gets destroyed during magnetic
reconnection (Ruzmaikin and Akhmetiev, 1994).

As in the case of the triple ring configurations of Paper V the bound-
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Figure 5.4: Isosurfaces of the magnetic energy for the initial field configurations
trefoil knot (left panel), Borromean rings (middle panel) and the IUCAA knot
(right panel).

aries are chosen to be periodic in order to conserve magnetic helicity. For the
same reason the magnetic resistivity η is chosen as small as computationally
possible. The governing equations for this problem are the same as for the
triple rings case, which are equations (2.1)–(2.3) without forcing fff . We use
the magnetic field configurations shown in Fig. 5.4 as initial conditions and let
the systems relax.

The relaxation of the n-foil knots does not give any surprises. The mag-
netic helicity imposes restrictions on the field relaxation, which gets more pro-
nounced as the complexity of the configuration is increased. The power laws
of t−1/3 found in Paper V for the energy decay of the helical triple ring con-
figuration could only be found for the most complex member of this family
studied here, the 7-foil knot. The least complex, the trefoil knot, shows a
t−2/3 behavior. This characteristics comes from the increasing ratio of mag-
netic helicity to magnetic energy as the complexity grows with n. The energy
increases linearly with complexity, while the magnetic helicity grows quadrat-
ically. Consequently, the realizability condition slows down the energy decay
more effectively (see Paper VI for details).

The Borromean rings show an intriguing property, which distinguishes this
configuration form other non-helical configurations. As the field evolves and
tries to relax it undergoes reconnection events. Those events transform the
linked rings into two separate rings, which are twisted (Fig. 5.5). The twist is of
opposite sign, due to magnetic helicity conservation. The energy decay is not
of the form t−3/2, but of t−1 (Fig. 5.6). This we attribute to the occurrence of
separate helical structures, which evolve independently. Similar reconnection
steps for this configuration were shown in a theoretical work by Ruzmaikin
and Akhmetiev (1994) where it was proposed that the Borromean rings should
reconnect into a trefoil knot and three figure eight knots with opposite helicity.
After further reconnection the system should end up with two un-knots and six
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Figure 5.5: Magnetic stream lines for the Borromean field configuration after 70
Alfvénic times (left) and 78 (right). The initial configuration is totally lost and
replaced by two twisted fields.

figure eight knots of which three have opposite sign of the other three, in order
to conserve helicity. Making the interpretation that those figure eight knots
are the internal twist of the final un-knots we can conclude that their findings
match with our simulation results. The presence of magnetic helicity in the
separate twisted tubes imposes restrictions on the relaxation expressed in the
realizability condition Eq. (2.49).

The IUCAA knot also shows a relaxation behavior, which lies in between
the decay speed of the helical and non-helical triple-ring configurations (Fig. 5.6).
This illustrates that even non-helical fields reveal non-trivial behavior. Since
no such helical structures as for the Borromean rings appear, we are tempted
to speculate about higher order invariants, which inhibit the field decay.

Once again the importance of the realizability condition is confirmed. For
the n-foil knots we see that the higher the magnetic helicity content is com-
pared to the magnetic energy the stronger is the inhibition from the realizabil-
ity condition to let the field relax into a lower energy state. The surprisingly
slow decay of the Borromean rings can be attributed to the emergence of he-
lical structures, which evolve independently and where the realizability con-
dition imposes restrictions on the relaxation. For the IUCAA knot no such
explanation could be found and one may again speculate about higher order
topological invariants. One way of doing this is by applying the concept of
topological flux functions, which can be used to uniquely identify the topol-
ogy of the magnetic field configuration (Yeates and Hornig, 2012). Defining
such a flux function requires a field with a preferential direction as they occur
for instance in tokamaks. This, nevertheless, does not restrict one of applying
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Figure 5.6: Normalized magnetic energy for the linked triple-ring configura-
tions, the Borromean rings and the IUCAA knot together with power laws to
guide the eye.

this concept on knots and links, since they can always be represented as braids
in a periodic domain.

A potential physical applications of the topologies discussed here is the ex-
planation of magnetic cavities observed in the intergalactic medium (Ruszkowski
et al., 2007; Pfrommer and Jonathan Dursi, 2010) which show high resistance
against Kelvin-Helmholtz instability. It has been shown by Braithwaite (2010)
that tangled fields enhance the stability of bubbles during relaxation. It is yet
to be demonstrated that they can reduce the Kelvin-Helmholtz instability.
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6. Conclusions

Denn die Menschen glauben an die Wahrheit dessen,
was ersichtlich stark geglaubt wird.

All things are subject to interpretation.
Whichever interpretation prevails at a given time

is a function of power and not truth.

Friedrich Nietzsche

Magnetic helicity is a fundamental quantity in the dynamics of magnetic
fields in the Universe. Its importance has been appreciated in several previous
works ranging from the implication of its conservation in dynamos (Pouquet
et al., 1976) to the constraint it imposes in field relaxation (Moffatt, 1978).

Its conservation causes the turbulent large-scale dynamo to grow on re-
sistive time scales, which, for astrophysical objects like the Sun and galaxies,
are much longer than the dynamical time scales we observe. The saturation
strength of the large-scale magnetic field is fundamentally affected by mag-
netic helicity as well and is drastically reduced to values much lower than
those observed. In Paper I it is discussed how the saturation characteristics
change with the relevant parameters, which are the scale separation ratio be-
tween the size of the turbulent motion and the system and the relative amount
of injected kinetic helicity. As predicted by mean-field estimates (Blackman
and Brandenburg, 2002), the saturation magnetic energy of the large-scale field
scales proportionally to the scale separation ratio and the injected relative he-
licity. Further, for the large-scale dynamo to operate, the critical value for the
normalized helicity of the small-scale turbulent motions scales inversely pro-
portional to the scale separation ratio. This leads to an excellent confirmation
of the mean-field predictions. Previous findings (Pietarila Graham et al., 2012),
which suggest different scaling behaviors, arguably lack proper analysis of the
magnetic field of the large-scale dynamo.

The form of the forcing function, which drives the dynamo, is usually taken
to be of helical nature, which leads to helical magnetic fields. Amongst these
different behaviors for the large-scale field is that of Paper I, where for most
parts a helical forcing random in time is used. There are three different mag-
netic field averages competing during the resistive saturation, the xy-, xz- and
yz-averaged magnetic fields. Only one survives at the end of the saturation
phase. For the ABC-flow forcing an intriguing behavior is seen, where the
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three modes oscillate in time with a phase shift of 2π/3. The nature of this
oscillation is not understood yet and has to be investigated further.

A reduction of magnetic helicity in the small scales can be obtained via
various kinds of fluxes (Rogachevskii and Kleeorin, 2000; Vishniac and Cho,
2001; Subramanian and Brandenburg, 2004, 2006) of which not all can effi-
ciently reduce its amount such that catastrophic α quenching gets alleviated.
Two kinds of fluxes are considered in Paper II. Advective fluxes, mediated by
a wind, efficiently transport the magnetic field together with small-scale mag-
netic helicity out of the system. Physically speaking this can be interpreted
as coronal mass ejections with helical magnetic fields or as a galactic wind.
Diffusive fluxes within closed domains between parts of opposite helicity are
also efficient enough to alleviate catastrophic α quenching and allow for high
mean magnetic saturation field strengths for high magnetic Reynolds numbers.
In practice this means that the mere reshuffling of magnetic helicity within a
closed system, through e.g. the equator, reduces sufficiently the amount of
“hostile” helicity of small-scale fields.

The gauge dependence of magnetic helicity does not constitute a prob-
lem for the physical effect of magnetic helicity fluxes. Choosing different
gauges, namely the Weyl, resistive and pseudo Lorentz gauges does not change
the time-averaged helicity fluxes through the mid-plane of the domain (Paper
III). This is shown for equations in the steady state, where fluxes of magnetic
helicity appear together with quantities which are gauge-independent, which
implies that also the fluxes must be gauge-independent.

Choosing different gauges can be useful to test magnetic helicity transport.
It can, however, lead to numerical instabilities arising from large gradient con-
tributions in the magnetic vector potential when computed numerically. This
pitfall can be circumvented by solving the evolution equations in a numeri-
cally stable gauge and applying a gauge transformation for computing gauge-
dependent quantities like the magnetic helicity density or its fluxes (Paper IV).
Transport and distribution of magnetic helicity in the advecto-resistive gauge
is found to differ significantly from the advective gauge. It can transport mag-
netic helicity more efficiently to smaller length scales, especially in the case of
low magnetic resistivity.

Topological constraints coming from field line linkage or knotting is con-
trasted against the realizability condition, which only holds as long as the con-
figuration is helical. Of course the realizability condition can already be re-
garded as describing constraints coming from the field’s topology. There are,
however, non-helical setups, which are topologically non-trivial. For those we
find in Paper V that their linkage has little effect on the field relaxation. This
is compared with non-linked setups, which show the same energy decay char-
acteristics. In Paper V the restrictions on the field’s dynamics solely arises
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from the magnetic helicity content, rather than the actual linkage.
The content of magnetic helicity in knotted flux tubes is shown to scale

like the number of crossings obtained from an appropriate 2d projection of the
configuration (Paper VI). The relaxation characteristics of those helical knots
is, however, not directly comparable with the previous helical triple-ring con-
figuration. The reason is simply the increasing helicity content with increasing
complexity of the knots. Non-helical setups exhibit relaxation speeds, which
are found to lie somewhere in between those for helical and non-helical fields.
For one configuration, namely the Borromean rings, this departure is attributed
to the occurrence of separated helical flux rings for which the realizability con-
dition holds. In the case of the non-helical IUCAA knot no such explanation
is possible, which is why one can speculate about higher order topological in-
variants. Fortunately magnetic helicity is not the only quantifier for the field’s
topology. There exists an infinite number of such quantities. One of them is
the fixed point index, which has been shown to impose another restriction on
the field’s relaxation (Yeates et al., 2010).
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7. Outlook

Dazu gibt er dem Menschen die Hoffnung:
sie ist in Wahrheit das übelste der Übel,

weil sie die Qual der Menschen verlängert.

Hope in reality is the worst of all evils
because it prolongs the torments of man.

Friedrich Nietzsche

Gradually we are extending our grasps on how magnetic helicity is formed
and in which ways it affects astrophysical systems. The work presented here
is rather abstract, yet fundamental. To make predictions for physical systems
more realistic simulations have to be performed.

The helical forcing used in turbulent dynamos leads to a separation of mag-
netic helicity in the small and large scales. As main consequence the large-
scale magnetic field grows to considerable values. In Paper I we also use
the ABC-flow forcing, which leads to rotating averages for the mean magnetic
field. The nature of this rotation and exact characteristics are not known. Fur-
ther investigations on that would show if the rotation keeps on in time or if the
equilibrium solution is stationary or not.

Apart form magnetic helicity, also cross helicity, the correlation of the
turbulent velocity with the turbulent magnetic field, takes part in the gener-
ation of the magnetic field (Yoshizawa, 1990). Most of the work done so far
(Yoshizawa and Yokoi, 1993; Yokoi, 1996, 1999) has been done analytically.
Numerical simulations have yet to show the importance of cross helicity for
the mean-field dynamo. A setup would consist of a rotating stratified medium
where a weak mean magnetic field is imposed. That should lead to the growth
of magnetic energy. The mean-field calculations would then be compared to
the direct numerical simulations using the test-field method (Schrinner et al.,
2005).

In the intergalactic medium X-ray cavities have been observed (Ruszkowski
et al., 2007; Pfrommer and Jonathan Dursi, 2010) which are hot under-dense
regions. They rise due to buoyancy and are expected to be shred into small
pieces due to the Kelvin-Helmholtz instability (von Helmholtz, 1868, Thom-
son, 1871, Chandrasekhar, 1961). They seem, however, to survive for millions
of years, which is a considerably longer time than predicted by simulations.
The Kelvin-Helmholtz instability has been shown to be suppressed by helical
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magnetic fields, which makes the fluid more stable against shredding. Nu-
merical simulations of helical magnetic cavities have to be conducted in order
to quantitatively understand their stability in the intergalactic medium. Such
configurations could be under-dense regions in a cooler stratified medium with
gravity. Inserting a helical magnetic field in those cavities should then show
stabilizing effects.

Magnetic helicity is not the only topological invariant. There exists an in-
finite number of invariants, which can be used to characterize the topology of
magnetic field lines. Just a few of them are useful for diffusive fields, which
fill the whole volume. Two of them are the magnetic helicity (Moffatt, 1969)
and the fixed point index (Yeates et al., 2010). The latter was shown to restrict
the relaxation of the magnetic field for particularly braided magnetic fields.
As a next step I will use this method for configurations which are topologi-
cally equivalent to knots and links. In this context a topological flux function
is defined whose change in the fixed points gives a proxy for the magnetic
reconnection rate. This will enable us to determine whether magnetic resistiv-
ity changes the reconnection rate and if magnetic helicity is conserved during
reconnection.
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Sammanfattning

Skillnaden mellan geniet och dumheten är
att geniet har sin begränsning.

Torvald Gahlin

Magnetfält spelar en betydande roll inom astrofysiken. De underlättar
transporten av rörelsemängdsmoment och kan därför förklara varför solen roterar
relativt långsamt. Magnetfälts uppkomst förklaras genom dynamoeffekten där
turbulent rörelse ger upphov till magnetisk energi. Sådana magnetfält är he-
likala, dvs. deras fältlinjer är länkade. Att de är helikala har vidsträckta kon-
sekvenser för deras dynamik.

Att förklara hur sådana fält kommer till stånd är en del av det här avhan-
dlingen. Det visas att det magnetiska heliciteten hindrar det storskaliga fältet
att utvecklas. Tiden som fältet behöver att formas blir längre än solens ålder
och intensiteten minskas till ett löjligt litet värde. Hur magnetfältet påverkas av
turbulensens egenskaper är avhandlingens första del. Det visas hur strömmen
av magnetisk helicitet lindrar den dämpade effekten för magnetfältets tillväxt.
Fysikaliskt betyder det att koronamassutkastningar stödjer fältets utveckling.

Den magnetiska helicitetens beroende på gaugen leder till frågan om hur
den kan vara fysikaliskt relevant. I den andra delen av avhandlingen under-
söker jag hur gaugen påverkar transporten av helicitet och hur dess fysikaliska
relevans räddas. Det visas att i det stationära tillståndet tidsmedelvärdet av
strömmen inte är gaugeberoende. Å andra sidan är spektrumet beroende på
gaugen. I den advecto-resistiva gaugen, till exempel, transporteras magnetisk
helicitet mer effektivt till små skalor, vilket ger upphov till en flatare profil.

Magnetisk helicitet kan tolkas som länkar av magnetfältlinjer. Därmed
blir det tydligt att fältet inte kan relaxera fritt. I den tredje och sista delen
undersöker jag hur länkning och heliciteten påverkar fältets dynamik. Det
visas att enbart länkning inte är tillräckligt för att inskränka dynamiken; det
behövs helicitet. Från ytterligare numeriska experiment visas det att andra
topologiska kvantiteter också kan spela en roll i fältets relaxation. Hittills är
det inte känt vilka.
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Magnetic field generation on scales large compared with the scale of the turbulent eddies is known to be
possible via the so-calledα effect when the turbulence is helical and if the domain is large enough forthe
α effect to dominate over turbulent diffusion. Using three-dimensional turbulence simulations, we show that
the energy of the resulting mean magnetic field of the saturated state increases linearly with the product of
normalized helicity and the ratio of domain scale to eddy scale, provided this product exceeds a critical value
around unity. This implies that large-scale dynamo action commences when the normalized helicity is larger
than the inverse scale ratio.Recent findings by Pietarila Graham et al. (2012, Phys. Rev. E85, 066406) of
a smaller minimal helicity may be due to the onset of small-scale dynamo actionat large magnetic Reynolds
numbers. However, the onset of large-scale dynamo action is difficultto establish when the kinetic helicity is
small. Instead of random forcing, they used an ABC-flow with time-dependentphases. We show that such
dynamos saturate prematurely in a way that is reminiscent of inhomogeneous dynamos with internal magnetic
helicity fluxes. Furthermore, even for very low fractional helicities, such dynamos display large-scale fields that
change direction, which is uncharacteristic of turbulent dynamos.

PACS numbers:

I. INTRODUCTION

The origin of magnetic fields in astrophysical bodies like
the Earth, the Sun and galaxies is studied in the field of dy-
namo theory. The temporal variation and strength of those
fields rules out a primordial origin, through which the mag-
netic field would have been created in the early Universe. For
magnetic fields with energies of the equipartition value, i.e.
the turbulent kinetic energy of the medium, the primordial hy-
pothesis explains their strength after creation, but fallsshort of
explaining how the field outlives billions of years of resistive
decay [1].

In dynamo theory, astrophysical plasmas are considered
sufficiently well conducting fluids where the inertia of the
charge-carrying particles can be neglected. In this approxi-
mation the equations of magnetohydrodynamics (MHD) pro-
vide an adequate model of the medium. In this framework it
has been studied under which conditions magnetic fields of
equipartition strength and scales larger than the turbulent mo-
tions are created and sustained [2].

A successful theoretical model describing the dynamo’s be-
havior is the mean-field theory. It relates the small-scale tur-
bulent motions to the mean magnetic field via the so-calledα
effect, which provides the energy input via helical turbulent
forcing. During the kinematic phase, i.e. negligible back re-
action of the magnetic field on the fluid, theα effect gives a
positive feedback on the large-scale magnetic field, which re-
sults in its exponential growth. Already the considerationof
the kinematic MHD equations with negligible Lorentz force
sheds light on the growth rate of the different modes of the
magnetic field during the kinematic phase. In the kinematic
phase the growth rateλ at wave numberk is given by [2]

λ = αk − ηTk
2 = (Cα − 1)ηTk

2, (1)

whereCα = α/ηTk is the relevant dynamo number for the
α2 dynamo,α is theα coefficient which is proportional to

the small-scale kinetic helicity, andηT = η + ηt is the sum
of molecular and turbulent magnetic diffusivity. Clearly,dy-
namo action occurs when|Cα| > Ccrit

α , where the onset
condition isCcrit

α = 1. Standard estimates for isotropic
turbulence in the high conductivity limit [2, 3] yieldα ≈
−(τ/3)〈ω · u〉 andηt ≈ (τ/3)〈u2〉, whereτ is the corre-
lation time of the turbulence,ω = ∇ × u is the vorticity and
u is the velocity in the small-scale fields. Here,〈.〉 denotes a
volume average. Usingηt ≫ η, we have

Cα ≈ −〈ω · u〉/k〈u2〉. (2)

It is convenient to define〈ω ·u〉/kf〈u2〉 as the normalized ki-
netic helicity,ǫf , soCα ≈ −ǫfkf/k. This scaling implies that
the critical value of the normalized helicityǫf scales inversely
proportional to the scale separation ratio, i.e.ǫf ∝ (kf/k)

−1,
wherek ≪ kf is the wave number of the resulting large-
scale magnetic field. This wave number can be equal to
k = k1 ≡ 2π/L, which is the smallest wave number in a
periodic domain of sizeL.

In summary, the critical dynamo numberCcrit
α , which de-

cides between growing or decaying solutions of the large-
scale dynamo (LSD), is proportional to the product of nor-
malized helicityǫf and scale separation ratiokf/k. Therefore,
the amount of helicity needed for the LSD is inversely propor-
tional to the scale separation ratio, and not some higher power
of it. It should be noted that thenormalizedkinetic helicity
ǫf used here is not the same as therelative kinetic helicity,
ǫ̃f = 〈ω · u〉/(ωrmsurms). The two are related to each other
via the relation

ǫ̃f/ǫf = kω/kf , (3)

wherekω ≈ ωrms/urms is inversely proportional to the Tay-
lor microscale. Here, the subscripts rms refer to root-mean-
square values. For small Reynolds numbers,kω provides a
useful estimate of the wave numberkf of the energy-carrying
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eddies. In contrast, for large Reynolds numbers Re, we expect
kω/kf to be proportional to Re1/2, soǫ̃f decreases correspond-
ingly while ǫf remains unchanged. Below we shall present
new results suggesting that in the present case of helical tur-
bulence the exponent is not 1/2 but 1/4.

To understand the saturation of a helical dynamo, it is im-
portant to understand the relation between the resulting large-
scale field and the associated small-scale field. Indeed, the
growth of the large-scale field is always accompanied by a
growth of small-scale magnetic field. Small-scale here means
the scale of the underlying turbulent motions, which drive
the dynamo. Conservation of total magnetic helicity causes
a build up of magnetic helicity at large scales and of oppo-
site sign at small scales [4, 5]. As the dynamo saturates, the
largest scales of the magnetic field become even larger, which
finally leads to a field of a scale that is similar to that of the
system itself. This can be understood as being the result of
an inverse cascade, which was first predicted based on closure
calculations [6].

If the domain is closed or periodic, the build up of small-
scale magnetic helicity causes theα effect to diminish, which
marks the end of the exponential growth and could occur well
before final saturation is reached. The dynamo then is said
to be catastrophically quenched and, in a closed or periodic
system, the subsequent growth to the final state happens not
on a dynamical timescale, but on a resistive one. Quenching
becomes stronger as the magnetic Reynolds number increases,
which, for astrophysically relevant problems, means a total
loss of the LSD within the timescales of interest. In the case
of open boundaries magnetic helicity fluxes can occur, which
can alleviate the quenching and allow for fast saturation ofthe
large-scale magnetic field [7–10].

In a recent publication [11] it was argued that for periodic
boundaries the critical value ofǫf for LSD action to occur de-
creases with the scale separation ratio likeǫcritf ∝ (kf/k1)

−3.
Their finding, however, is at variance with the predictions
made using equation (1), which would rather suggest a depen-
dence ofǫcritf ∝ (kf/k1)

−1 with Ccrit
α = 1. This discrepancy

could be a consequence of the criterion used in [11] for de-
terminingCcrit

α . The authors looked at the growth rate of the
magnetic field after the end of the kinematic growth phase, but
only at a small fraction of the resistive time. Therefore their
results might well be contaminated by magnetic fields result-
ing from the small-scale dynamo (SSD). Earlier simulations
[12] have demonstrated that for ReM ≥ 100, the growth rate
of the helical LSD approaches the well-known scaling of the
non-helical SSD withλ ∝ Re1/2, which corresponds to the
turnover rate of the smallest turbulent eddies [13, 14].

Given that the LSD is best seen in the nonlinear regime
[15], we decided to determineCcrit

α from a bifurcation dia-
gram by extrapolating to zero. In a bifurcation diagram we
plot the energy of the mean or large-scale field versusCα.
Simple considerations using the magnetic helicity equation
applied to a homogeneous system in the steady state show
that the current helicity must vanish [15]. In a helically driven
system, this implies that the current helicity of the large-scale
field must then be equal to minus the current helicity of the
small-scale field. For a helical magnetic field this yields the

value of 〈B2〉/B2
eq approximately asǫfkf/k1, i.e., propor-

tional toCα. HereBeq = (µ0ρ)
1/2urms is the equipartition

value of the magnetic field with the permeabilityµ0 and the
mean densityρ. Again, this suggests that the LSD is excited
for ǫf > (kf/k1)

−1 rather than some higher power ofkf/k1.
This is a basic prediction that has been obtained from non-
linear mean-field dynamo models that incorporate magnetic
helicity evolution [16] as well as from direct numerical sim-
ulations in the presence of shear [17].It is important to em-
phasize that mean field dynamo theory has been criticized on
the grounds that noα effect may exist in the highly nonlin-
ear regime at large magnetic Reynolds numbers [18]. This
is however in conflict with results of numerical simulations
using the test-field method [19] showing thatα effect and tur-
bulent diffusivity are both large, and that only the difference
between both effects is resistively small. Another possibil-
ity is that the usual helical dynamo ofα2 type may not be
the fastest growing one [20]. This is related to the fact that,
within the framework of the Kazantsev model [21] with he-
licity, there are new solutions with long-range correlations so-
lutions [22, 23], which could dominate the growth of a large
scale field at early times.The purpose of the present paper is
therefore to reinvestigate the behavior of solutions in thenon-
linear regime over a broader parameter range in the light of
recent conflicting findings [11].

II. THE MODEL

A. Basic equations

Following earlier work, we solve the compressible hydro-
magnetic equations using an isothermal equation of state. Al-
though compressibility is not crucial for the present purpose,
it does have the advantage of avoiding the non-locality as-
sociated with solving for the pressure, which requires global
communication. Thus, we solve the equations

∂

∂t
A = U × B − ηµ0J , (4)

D

Dt
U = −c2s∇ ln ρ+

1

ρ
J × B + F visc + f , (5)

D

Dt
ln ρ = −∇ · U , (6)

whereA is the magnetic vector potential,U the velocity,B
the magnetic field,η the molecular magnetic diffusivity,µ0

the vacuum permeability,J the electric current density,cs
the isothermal sound speed,ρ the density,F visc the viscous
force,f the helical forcing term, andD/Dt = ∂/∂t+U · ∇
the advective time derivative. The viscous force is given as
F visc = ρ−1∇ · 2νρS, whereν is the kinematic viscosity,
andS is the traceless rate of strain tensor with components
Sij = 1

2 (ui,j + uj,i) − 1
3δij∇ · U . Commas denote partial

derivatives.
The energy supply for a helically driven dynamo is pro-

vided by the forcing functionf = f(x, t), which is a helical
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function that is random in time. It is defined as

f(x, t) = Re{Nfk(t) exp[ik(t) · x+ iφ(t)]}, (7)

wherex is the position vector. The wave vectork(t) and the
random phase−π < φ(t) ≤ π change at every time step,
so f(x, t) is δ-correlated in time. For the time-integrated
forcing function to be independent of the length of the time
step δt, the normalization factorN has to be proportional
to δt−1/2. On dimensional grounds it is chosen to beN =
f0cs(|k|cs/δt)1/2, wheref0 is a non-dimensional forcing am-
plitude. We choosef0 = 0.02 which results in a maximum
Mach number of about 0.3 and an rms value of about 0.085.
At each timestep we select randomly one of many possible
wave vectors in a certain range around a given forcing wave
number. The average wave number is referred to askf . Trans-
verse helical waves are produced via [14]

fk = R · f (nohel)
k with Rij =

δij − iσǫijkk̂k√
1 + σ2

, (8)

whereσ is a measure of the helicity of the forcing andσ = 1
for positive maximum helicity of the forcing function. Fur-
thermore,

f
(nohel)
k = (k × e) /

√
k2 − (k · e)2 (9)

is a non-helical forcing function, wheree is an arbitrary unit
vector not aligned withk; note that|fk|2 = 1 and

fk · (ik × fk)
∗ = 2σk/(1 + σ2), (10)

so the relative helicity of the forcing function in real space is
2σ/(1 + σ2).

For comparison with earlier work, we shall also use in one
case an ABC-flow forcing function [24],

f(x) =
f0√

3
2 (1 + σ2)



sinX3 + σ cosX2

sinX1 + σ cosX3

sinX2 + σ cosX1


 , (11)

whereXi = kfxi+θi andθi = θ0 cosωit are time-dependent
phases that vary sinusoidally with frequenciesωi and ampli-
tudeθ0. This forcing function is easy to implement and serves
therefore as a proxy of helical turbulence; see Ref. [11, 25],
where the phases changed randomly. We have restricted our-
selves to the special case where the coefficients in front of
the trigonometric functions are unity, but those could be made
time-dependent too; see Ref. [26]. However, as we will see
below, ABC-flow driven dynamos do not show some crucial
aspects of random plane wave-forced helical turbulence. Most
of the results presented below concern the forcing function(7)
and only one case with Eq. (11) will be considered at the end.

Our model is governed by several non-dimensional parame-
ters. In addition to the scale separation ratiokf/k1, introduced
above, there are the magnetic Reynolds and Prandtl numbers

ReM = urms/ηkf , PrM = ν/η. (12)

These two numbers also define the fluid Reynolds number,
Re = urms/νkf = ReM/PrM. The maximum values that

can be attained are limited by the numerical resolution and
become more restrictive at larger scale separation. The cal-
culations have been performed using the PENCIL CODE (see
http://pencil-code.googlecode.com) at resolutions of upto
5123 mesh points.

B. Mean-field interpretation

The induced small-scale motionsu are helical and give rise
to the usual (kinetic)α effect [3]

αK ≈ − 〈ω · u〉
3urmskf

. (13)

In the nonlinear regime, following the early work of Pouquet,
Frisch, and Ĺeorat [27], the relevantα effect for dynamo ac-
tion is believed to be the sum of the kinetic and a magneticα,
i.e.,

α ≈ −〈ω · u〉 + 〈j · b〉/〈ρ〉
3urmskf

. (14)

Simulations have confirmed the basic form of Eq. (14) with
equal contributions from〈ω · u〉 and 〈j · b〉/〈ρ〉, but one
may argue that the second term should only exist in the pres-
ence of hydromagnetic background turbulence [28], but not if
the magnetic fluctuations are a consequence of tangling of a
mean field produced by dynamo action as in the simulations
in Ref. [15]. However, to explain the resistively slow satu-
ration in those simulations, the only successful explanation
[16, 29] comes from considering the magnetic helicity equa-
tion, which feeds back onto theα effect via Eq. (14). This
is our main argument in support of the applicability of this
equation. Another problem with Eq. (14) is the assumption
of isotropy [28], which has however been relaxed in subse-
quent work [30]. Let us also mention that Eq. (14) is usually
obtained using theτ approximation. In its simplest form, it
yields incorrect results on the low conductivity limit, butthis
problem can be avoided, too [31].

Equation (14) is used to derive the expression for the re-
sistively slow saturation behavior [29]. We will not repro-
duce here the derivation, which can be found elsewhere [16].
The resulting large-scale fields can be partially helical, which
means one can write

〈J · B〉 = ǫmkm〈B2〉, (15)

with large-scale wave vectorkm and corresponding fractional
helicity ǫm, defined through Eq. (15).However, in the cases
considered below the domain is triply periodic, so the solu-
tions are Beltrami fields for whichkm ≈ k1 andǫm ≈ 1 is
an excellent approximation, and onlyǫf will take values less
unity. Nevertheless, in some expressions we retain theǫm fac-
tor for clarity. For example, the saturation value of the large-
scale magnetic field,Bsat, is given by [16]

B2
sat/B

2
eq ≈ (|Cα|/ǫm − 1) ι, (16)

whereCα = αK/(ηTk1) is the relevant dynamo number
based on the smallest wavenumber in the domain andι =
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1 + 3/ReM ≡ ηT/ηt is a correction factor resulting from the
fact thatηT is slightly bigger thanηt. The factor3 in the ex-
pression forι results from our definition of ReM and the fact
that [32]

ηt ≈ urms/3kf = ηReM/3. (17)

Equation (16) shows clearly the onset condition|Cα| >
|ǫm| ≈ 1. Using Eqs. (13) and (17), we find

Cα ≈ − 〈ω · u〉
ιk1u2

rms

= −ǫfkf
ιk1

. (18)

From equation (16) we can derive the critical value of the nor-
malized helicityǫf as a function of the scale separation ratio.
SettingCα to is critical value (|Cα| = ǫm) we obtain

ǫcritf ≈ ιǫm

(
kf
k1

)−1

, (19)

which is at variance with the findings in [11].
Once the dynamo is excited and has reached a steady state,

not onlyα but alsoηt will be suppressed. This can be taken
into account using a quenching factorg(B), so ηt(B) =
ηt0g(B) with g = (1 + g̃|B|/Beq)

−1 [15, 33, 34]. Equa-
tion (16) is then modified and readsB2

sat/B
2
eq = (|Cα| −

Cα0)ι/ǫm with

Cα0 = [1 − (1 − g)/ι]ǫm. (20)

Note thatCα0 = ǫ−1
m in the unquenched case, i.e., forg = 1.

C. Simulation strategy

We recall that our forcing termf in equation (7) is a
stochastic forcing centered around the wave numberkf . In
contrast to [11] this forcing isδ-correlated in time. The frac-
tional helicity of the helical forcing is a free parameter. The
simulation domain is a periodic cube with dimensions2π.
Due to the cubic geometry of the domain the large-scale mag-
netic field can orient itself in 3 possible directions. Therefore
we compute three possible planar averages (xy, xz, andyz
averages). From their resistive evolution we infer their satu-
ration values at the end of the resistive phase. The strongest
field gives then the relevant mean-fieldB.

SinceB is helical and magnetic helicity can only change
on resistive timescales, the temporal evolution of the energy
of the mean magnetic field,M(t), is given by [15]

M(t) = M0 − M1e
−t/τ , (21)

whereτ−1 = 2ηǫ2mk
2
1 is known,M0 = B2

sat is the square
of the desired saturation field strength, andM1 is an un-
known constant that can be positive or negative, depending
on whether the initial magnetic field of a given calculation
was smaller or larger than the final value. (Here, an initial
field could refer to the last snapshot of another calculation
with similar parameters, for example.) The functional behav-
ior given by Eq. (21) allows us to determineB2

sat as the time

FIG. 1: (Color online) Example showing the evolution of the normal-
ized 〈B2〉 (dashed) and that of〈B2〉 + τd〈B2〉/dt (dotted), com-
pared with its average in the interval1.2 ≤ 2ηk2

1t ≤ 3.5 (horizontal
blue solid line), as well as averages over 3 subintervals (horizontal
red dashed lines). Here,B is evaluated as anxz average,〈B〉xz.
For comparison we also show the other two averages,〈B〉xy (solid)
and〈B〉xy (dash-dotted), but their values are very small.

average ofM + τdM/dt, which should only fluctuate about
a constant value, i.e.,

B2
sat ≈ 1

t2 − t1

∫ t2

t1

[
〈B2〉(t′) + τ

d

dt′
〈B2〉

]
dt′. (22)

This technique has the advantage that we do not need to wait
until the field reaches its final saturation field strength. Er-
ror bars can be estimated by computing this average for each
third of the full time series and taking the largest departure
from the average over the full time series. An example is

shown in Fig. 1, where we see〈B2〉 still growing while

〈B2〉 + τd〈B2〉/dt is nearly constant when〈B2〉 reaches
a value less than half its final one.This figure shows that

the growth of〈B2〉 follows the theoretical expectation (21)
quite closely and that temporal fluctuations about this value
are small, as can be seen by the fact that its time derivative
fluctuates only little.

III. RESULTS

A. Dependence of kinetic helicity onσ

We recall that the relative helicity of the forcing functionis
f · ∇ × f/[f rms(∇ × f)rms] = 2σ/(1 + σ2). This imposes
then a similar variation onto the relative kinetic helicity, ǫ̃f =
〈ω ·u〉/ωrmsurms; see Fig. 2(a). However, as discussed above,
ǫ̃f is smaller thanǫf by a factorkω/kf , which depends on the
Reynolds number. It turns out thatǫf matches almost exactly
the values of2σ/(1 + σ2); see Fig. 2(b).

The theoretically expected scalingkω/kf ∝ Re1/2 is a
well-known result for non-helical turbulence [35], but for
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FIG. 2: (Color online) Dependence of relative kinetic helicityǫ̃f (a)
and normalized kinetic helicityǫf (b) on the helicity parameterσ of
the forcing function Eq. (8) together with the analytical expression
2σ/(1 + σ2) (solid line).

FIG. 3: (Color online) Dependence ofkω/kf on Re. The open and
closed circles correspond to runs with PrM = 1, while the+ signs
correspond to runs with PrM = 100, so Re= ReM/PrM.

helical turbulence those scaling relations are modified; see,
e.g., Ref. [36]. For our current data we find thatkω/kf ≈
0.8Re1/4; see Fig. 3. The reason for this power law behavior
is however unclear.
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FIG. 4: (Color online) Steady state values of〈B2〉/B2
eq as a function

of Cα together with the theoretical prediction from equation (16)
(dashed line) and a linear fit (dotted line).

B. Dependence on scale separation

We perform simulations with different forcing wave num-
berskf and different values ofǫf at approximately constant
magnetic Reynolds number, ReM ≈ 6, and fixed magnetic
Prandtl number, PrM = 1. Near the end of the resistive sat-
uration phase we look at the energy of the strongest mode at
k = k1, using the method described in§ II C. We choose this
rather small value of Re because we want to access relatively
large scale separation ratios up tokf/k1 = 80. Given that the
Reynolds number based on the scale of the domain is limited
by the number of mesh points (500, say), it follows that for
kf/k1 = 80 the Reynolds number defined through Eq. (12) is
6. For comparison, a Reynolds number based on the size of
the domain, i.e.,urmsL/η, would be larger by a factor2π, i.e.,
3000.

As seen from Eq. (16), mean-field considerations predict
a linear increase of the saturation magnetic energy withCα

and onset atCα = 1. This behavior is reproduced in our
simulation (Fig. 4), where we compare the theoretical predic-
tion with the simulation results. For different values ofkf/k1
andCα we extrapolate the critical valueCcrit

α ≈ 1.2 (Fig. 4),
which gives the critical valuesǫcritf ≈ 1.2ι (kf/k1)

−1 =
1.7 (kf/k1)

−1 for which the LSD is excited. For each scale

separation value we plot the dependence of〈B2〉/B2
eq on ǫf

(Fig. 5) and make linear fits. From these fits we can extrap-
olate the critical valuesǫcritf , for which the LSD gets excited
(Fig. 6), which gives againǫcritf ≈ 1.7 (kf/k1)

−1.

It is noteworthy that the graph of〈B2〉/B2
eq versusCα de-

viates systematically (although only by a small amount) from
the theoretically expected value,(Cα−1)ι. While the slope is
rather close to the expected one, the onset of LSD is slightly
delayed and occurs atCα ≈ 1.2 instead of 1. The reason for
this is not clear, although one might speculate that it couldbe
modeled by adopting modified effective values ofι or ǫm in
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FIG. 5: (Color online) Steady state values of〈B2〉/B2
eq as a function

of ǫf for various scale separation valueskf/k1 together with linear
fits.
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FIG. 6: Critical value for the normalized kinetic helicityǫf for which
LSD action occurs for different scale separations.

Eq. (20). Apart from such minor discrepancies with respect to
the simple theory, the agreement is quite remarkable. Never-
theless, we must ask ourselves whether this agreement persists
for larger values of the magnetic Reynolds number. This will
be addressed in§ III C.

At this point we should note that there is also a theoretical
prediction for the energy in the magnetic fluctuations, namely
〈b2〉/B2

eq ≈ (Cα−Ccrit
α )/Cα. Nonetheless, the results shown

in Fig. 7 deviate from this relation and are better describedby
a modified formula

〈b2〉/B2
eq ∝ 1 − (Ccrit

α /Cα)
n (with n ≈ 4). (23)

Again, the reason for this departure is currently unclear.

FIG. 7: (Color online) Steady state values of〈b2〉/B2
eq as a function

of Cα together with the fit formula from equation (23) withn = 4,
compared withn = 1 (dotted) andn = 2 (dashed).

C. Dependence onReM

To examine whether there is any unexpected dependence of
the onset and the energy of the mean magnetic field on ReM

and to approach the parameters used in [11], who used values
up to ReM = 1500, we now consider larger values of the mag-
netic Reynolds number. This widens the inertial range signifi-
cantly and leads to the excitation of the SSD. Higher values of
ReM can more easily be reached at larger values of PrM. This
is because at large values of PrM, most of the injected energy
is dissipated viscously rather than resistively, leaving less en-
ergy to be channeled down the magnetic cascade [37]. This is
similar to the case ofsmallvalues of PrM, where largerfluid
Reynolds numbers can be reached because then most of the
energy is dissipated resistively [12]. Here, however, we shall
be concerned with the former case of large values of PrM.

The results for PrM = 100 are presented in Fig. 8 for differ-
ent values ofǫf and ReM being either 80, 200, or 600. Most
importantly, it turns out that the critical value for the onset of
LSD is not much changed. We now findCcrit

α ≈ 0.9 instead

of 1. Furthermore, the dependence of〈B2〉/B2
eq onCα, and

thus also the value ofCcrit
α , are the same for all three values

of ReM. It is however surprising that it is now even below
unity. Furthermore, the slope is different from that of Fig.4:
it is now closer to 2 than to the earlier value of 1. This dis-
crepancy with the theory can be easily explained by arguing
that the relevant value ofBeq has been underestimated in the
large PrM cases. Looking at the power spectrum of the high
PrM simulations in Fig. 10(a), we see that the kinetic energy
is indeed subdominant and does not provide a good estimate
of the magnetic energy of the small-scale field〈b2〉/2µ0. By
contrast, for PrM = 1, the magnetic and kinetic energy spec-
tra are similar at all scales except neark = k1; see Fig. 10(b).
The slight super-equipartition fork > kf is also typical of
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FIG. 8: (Color online) Steady state values of〈B2〉/B2
eq as a func-

tion of Cα for PrM = 100 (dashed line) and PrM = 1 (solid line)
for kf/k1 = 5 and different values of ReM (different symbols), com-
pared with the theoretical prediction (dotted line).

small-scale dynamos [14].
A visualization of the magnetic field in this case is given

in Fig. 9, where we showBx on the periphery of the compu-
tational domain. The magnetic field has now clearly strong
gradients locally, while still being otherwise dominated by a
large-scale component atk = k1. In this case the large-scale
field shows variations only in they direction and is of the form

B = (sin k1y, 0, cos k1y)Bsat. (24)

This field has negative magnetic helicity, soJ ·B = −k1B
2
,

as expected for a forcing function with negative helicity.
We have argued that the reason for the larger slope in the

graph of〈B2〉 versusCα is related toBeq being underesti-
mated for large values of PrM. To confirm this, we now con-
sider calculations with PrM = 1, two different values ofǫf ,
fixed values of ReM (either 160 or 320), and fixed scale sep-
aration ratiokf/k1 = 5. We see in Fig. 8 that the slope is
indeed smaller. Furthermore,Ccrit

α is now above 1, and even
larger than at low ReM (nowCcrit

α ≈ 1.5 instead of 1.2).

D. ABC-flow forcing

In this paper we have used the fact that the saturation field
strength is described by Eq. (16). While this is indeed well
obeyed for our randomly driven flows, this does not seem to
be the case for turbulence driven by ABC-flow forcing. We
demonstrate this by considering a case that is similar to that
shown in Fig. 1, where ReM ≈ 6 in the saturated state. We
thus use Eq. (11) withσ = θ0 = 1 andkf/k1 = 15. The
kinematicflow velocity reaches an equilibrium rms velocity
of U0 = f0/νk

2
f . The magnetic Reynolds number based on

this velocity isU0/ηkf , which is chosen to be 13, so that dur-
ing saturationthe resulting value of ReM is about 6, just as in

FIG. 9: (Color online) Visualization ofBx on the periphery of the
domain for PrM = 100 after resistive saturation.

FIG. 10: (Color online) Comparison of kinetic and magnetic energy
spectra for PrM = 100 (upper panel) and PrM = 1 (lower panel) for
σ = 0.2 (solid lines) and0.12 (dashed lines).

Fig. 1. For thex, y, andz components we take different forc-
ing frequencies such thatωi/k1U0 is 10, 11, and 9 fori = 1,
2, and 3, respectively. These values correspond approximately
to the inverse correlation times used in [11]. The result is
shown in Fig. 11. It turns out that the magnetic field grows
initially as expected, based on Eq. (21), but then the final sat-
uration phase is cut short belowB2

sat/B
2
eq ≈ 3 rather than the
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FIG. 11: (Color online) Similar to Fig. 1, but for time-dependent
ABC-flow driving. As in Fig. 1, we have herekf/k1 = 15 and
ReM ≈ 4.

FIG. 12: (Color online) Dependence of the normalized〈B2〉 for dif-
ferent planar averages:yz (black), xz (red, dotted), andxy (blue,
dashed), forσ = 0.1 (upper panel) andσ = 0.01 (lower panel).

value 12 found with random wave forcing. This is reminis-
cent of inhomogeneous dynamos in which magnetic helicity
fluxes operate. In homogeneous systems, however, magnetic
helicity flux divergences have only been seen if there is also
shear [38]. In any case, the present behavior is unexpected and
suggests that the effective value ofCα is reduced. Using the
test-field method [39, 40], we have confirmed that the actual
value ofCα is not reduced. The dynamo is therefore excited,
but the value implied for the effective helicity is reduced.

Another possibility is that, especially for small values ofσ,
the ABC-flow has non-generic dynamo properties that emu-
late aspects of large-scale dynamos. An example is shown in
Fig. 12 where we plot the time evolution of all three planar av-
erages (yz, xz, andxy). Even forσ = 0.01, large-scale mag-
netic fields are still excited, but the field orientation changes
periodically on a timescale of 1–2 diffusion times. This is
obviously a fascinating topic for further research, but it is un-

related to our main question regarding the minimal helicityof
generic turbulent dynamos.It might indeed be an example of
so-called incoherentα effect dynamos [41] that have recently
attracted increased interest [42–44].

The main point of this section is to emphasize the limited
usefulness of ABC-flow dynamos. Another such example are
dynamos driven by the Galloway-Proctor flow, which also has
a number of peculiar features; see Ref. [45].

IV. CONCLUSIONS

In this paper we have studied the simplest possible LSD
and have investigated the dependence of its saturation ampli-
tude on the amount of kinetic helicity in the system. We recall
that the case of a periodic domain has already been investi-
gated in some detail [29, 46], and that theoretical predictions
in the case with shear [16] have been verified numerically for
fractional helicities [17]. Yet the issue has now attractednew
interest in view of recent results suggesting that, in the limit of
large scale separation, the amount of kinetic helicity needed
to drive the LSD might actually be much smaller than what
earlier calculations have suggested [11]. This was surprising
given the earlier confirmations of the theory. As explained
above, the reason for the conflicting earlier results may be
the fact that the LSD cannot be safely isolated in the linear
regime, because it will be dominated by the SSD or, in the
case of the ABC-flow dynamo, by some other kind of dynamo
that is not due to theα effect. Furthermore, as already al-
luded to in the introduction, there can be solutions with long-
range correlations that could mimic those that are not due to
theα effect. Indeed, within the framework of the Kazantsev
model [21], the solutions to resulting Schrödinger-type equa-
tions can be described as bound states. The addition of kinetic
helicity leads to new solutions with long-range correlations as
a result of tunneling from the small-scale dynamo solutions
[20, 22, 23]. Indeed, it has been clear for some time that
large-scale magnetic fields of the type of anα2 dynamo be-
come only apparent in the late saturation of the dynamo [15].

While there will always remain some uncertainty regard-
ing the application to the much more extreme astrophysical
parameter regime, we can now rule out the possibility of sur-
prising effects within certain limitsof ReM below 600, Re
below 300, and scale separation ratios below 80.In stars
and galaxies, the scale separation ratio is difficult to estimate,
but it is hardly above the largest value considered here. This
ratio is largest in the top layers of the solar convection zone
where the correlation length of the turbulence is short (1Mm)
compared with the spatial extent of the system (100Mm).

Of course, the magnetic Reynolds numbers in the Sun and
in galaxies are much larger than what will ever be possible to
simulate. Nevertheless, the results presented here show very
little dependence of the critical value ofCα on ReM. For
PrM = 1, for example, we findCcrit

α = 1.2 for ReM ≈ 6
andCcrit

α = 1.5 for ReM ≈ 600. On the other hand, for
larger values of PrM, the value ofCcrit

α can drop below unity
(Ccrit

α = 0.9 for PrM = 100). While these changes ofCcrit
α
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are theoretically not yet understood, it seems clear that they
are small and do not provide support for an entirely different
scaling law, as anticipated in recent work [11].
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ABSTRACT
Using mean-field models with a dynamical quenching formalism, we show that in finite
domains magnetic helicity fluxes associated with small-scale magnetic fields are able to
alleviate catastrophic quenching. We consider fluxes that result from advection by a mean
flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density
or the explicit removal which may be associated with the effects of coronal mass ejections in
the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be
equally strong for both large- and small-scale fields. In the presence of shear, there is also an
additional magnetic helicity flux associated with the mean field, but this flux does not alleviate
catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks
of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical
behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the
computational domain.

Key words: hydrodynamics – magnetic fields – MHD – turbulence.

1 IN T RO D U C T I O N

Both mean-field theories and direct simulations of the generation
of large-scale magnetic fields in astrophysical bodies, such as the
Sun or the Galaxy, invoke the effects of twist. Twist is typically
the result of the Coriolis force acting on ascending or descending
magnetic field structures in a stratified medium. The net effect of
this systematic twisting motion on the magnetic field is called the α

effect. In textbooks, the α effect is normally introduced as a result
of helical turbulence (Moffatt 1978; Parker 1979; Krause & Rädler
1980), but it could also arise from magnetic buoyancy instabilities
(Schmitt 1987; Brandenburg & Schmitt 1998). The latter may also
be at the heart of what is known as the Babcock–Leighton mech-
anism that describes the net effect of the tilt of decaying active
regions. Mathematically, this mechanism can also be described by
an α effect (Stix 1974). Regardless of all these details, any of these
processes face a serious challenge connected with the conservation
of magnetic helicity (Pouquet, Frisch & Léorat 1976; Kleeorin &
Ruzmaikin 1982; Kleeorin, Rogachevskii & Ruzmaikin 1995). The
seriousness of this is not generally appreciated, even though the con-
servation of magnetic helicity has long been associated with what
is called catastrophic α quenching (Gruzinov & Diamond 1994,
1995, 1996). Catastrophic α quenching refers to the fact that the α

effect in helical turbulence in a periodic box decreases with increas-
ing magnetic Reynolds number for equipartition strength magnetic

�E-mail: brandenb@nordita.org

fields (Vainshtein & Cattaneo 1992; Cattaneo & Hughes 1996). This
would be ‘catastrophic’ because the magnetic Reynolds number is
large (109 in the Sun and 1015 in the Galaxy).

A promising theory for modelling catastrophic α quenching in a
mean-field simulation is the dynamical quenching approach involv-
ing an evolution equation for the α effect that follows from magnetic
helicity conservation (Kleeorin & Ruzmaikin 1982). Later, Field &
Blackman (2002) showed for the first time that this formalism is
also able to describe the slow saturation of a helical dynamo in
a triply periodic domain (Brandenburg 2001a). As this dynamo
evolves towards saturation, a large-scale magnetic field builds up,
but this field possesses magnetic helicity. Indeed, the eigenfunction
of a homogeneous α2 dynamo has magnetic and current helicities
proportional to α. However, this concerns only the mean field, and
since the helicity of the total field is conserved, the small-scale or
fluctuating field must have magnetic helicity of the opposite sign
(Seehafer 1996). This leads to a reduction of the α effect (Pouquet
et al. 1976).

The dynamical quenching formalism is now frequently used to
model the non-linear behaviour of mean-field dynamos with and
without shear (Blackman & Brandenburg 2002), open or closed
boundaries (Brandenburg & Subramanian 2005) and sometimes
even without α effect (Yousef, Brandenburg & Rüdiger 2003;
Brandenburg & Subramanian 2005). However, it soon became clear
that the catastrophic quenching of the α effect can only be allevi-
ated in the presence of magnetic helicity fluxes out of the domain
(Blackman & Field 2000a,b; Kleeorin et al. 2000, 2002). There are
various contributions to the magnetic helicity flux (Rogachevskii &

C© 2009 The Authors. Journal compilation C© 2009 RAS
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Kleeorin 2000; Vishniac & Cho 2001; Subramanian & Brandenburg
2004, 2006), but one of the most obvious ones is that associated with
advection. Shukurov et al. (2006) have implemented this effect in
a mean-field model with dynamical quenching in order to model
the effects of outflows on the evolution of the galactic magnetic
field. One goal of this paper is to study this effect in more detail. In
particular, it is important to clarify the consequences of boundary
conditions on the local dynamics away from the boundaries. Indeed,
is it really true that a helicity flux has to be maintained all the way
to the boundaries, or can the helicity flux be confined to a part of
the domain to alleviate catastrophic α quenching at least locally?
What happens if this is not the case?

The notion of alleviating catastrophic α quenching only locally
is sometimes invoked in models of the solar dynamo that rely on the
production of strong magnetic fields at the bottom of the convection
zone. By placing the α effect only near the surface, as is done in the
interface dynamo of Parker (1993) or dynamos that are controlled
by meridional circulation (Choudhuri, Schüssler & Dikpati 1995),
one may evade catastrophic quenching more easily. On the other
hand, as shown by Yousef et al. (2003), the effects of magnetic
helicity conservation can play a role even if there is originally no
α effect. It is therefore important to understand in more detail the
physics of dynamical α quenching and its dependence on magnetic
helicity fluxes.

Our starting point in this paper is the model of Shukurov et al.
(2006), where magnetic helicity fluxes were driven by the advection
from an outflow. This allows us to study the effects of varying
strength of this flux in different parts of the domain. For simplicity,
and in order to isolate the main effects, we ignore shear in most parts
of this paper. In view of later applications to the Sun and the Galaxy,
this is clearly artificial, but it helps significantly in the interpretation
of the results. In particular, in the absence of shear, it is possible to
have steady solutions, or at least solutions whose magnetic energy
density is constant in time.

2 TH E MO D EL

2.1 Evolution equation of the mean field

In this paper, we consider a simple mean-field dynamo in a local
one-dimensional domain. Such a model could be applicable to one
hemisphere of a rotating disc or to the region close to the equator of
outer stellar convection zones. Denoting the mean magnetic field by
B = B(z, t), the coordinate z would correspond either to the height
above the mid-plane in the case of the disc or to the latitudinal
distance from the equator in the case of a spherical shell. The x
and y components would correspond to poloidal and toroidal fields,
although in the absence of shear the two are interchangeable and
cannot be distinguished. Using ∇ · B = ∂Bz/∂z = 0, we have
Bz = constant = 0, i.e. no Bz field is imposed. Such a mean field
could be obtained by averaging the actual magnetic field over the x
and y directions of a Cartesian domain.

The evolution of B is governed by the Faraday equation

∂B
∂t

= −∇ × E, (1)

where E = −(US + U) × B −E +ημ0 J is the mean electric field,
U is the mean flow in the z direction, US = (0, Sx, 0) is a linear
shear flow, E is the mean electromotive force, J = ∇ × B/μ0 is
the mean current density and μ0 is the vacuum permeability. In one
case, we adopt a shear parameter S that is different from zero. Since
the shear is linear, we can write US × B as −SAy x̂ plus a gradient

term that can be removed by a gauge transformation. Thus, we have

−E = ∇(SxAy) − SAy x̂ + U × B + E − ημ0 J, (2)

where U is now the flow associated with the outflow only and
does not include the shear flow. Next, we express B = ∇ × A in
terms of the magnetic vector potential A, and solve equation (1)
in its uncurled form, ∂A/∂t = −E − ∇φ, where φ is the mean
electrostatic potential. We perform a gauge transformation, A →
A +∇�, with the choice � = ∫

(φ −SxAy) dt , which removes the
gradient term to yield

∂A
∂t

= −E, (3)

which is then the final form of our equation for A. This form of the
equation together with boundary conditions for A characterizes the
gauge used to calculate magnetic helicity densities and magnetic
helicity fluxes for the mean field.

We solve equation (3) in the domain 0 < z < L and assume either
a vacuum or a perfect conductor boundary condition on z = L. This
means that on z = L the mean magnetic field either vanishes, i.e.
Bx = By = 0, or that its z derivatives vanish, i.e. Bx,z = By,z = 0,
where a comma denotes partial differentiation. In terms of A, this
means that on z = L we have either

Ax,z = Ay,z = 0 (vacuum condition), (4)

or

Ax = Ay = 0 (perfect conductor condition). (5)

It is well known that the solutions can be in one of the two pure
parity states that are either symmetric (S) or antisymmetric (A)
about the mid-plane (Krause & Rädler 1980), so we have either
Bx,z = By,z = 0 or Bx = By = 0 on z = 0. In terms of A,

Ax = Ay = 0 on z = 0 (S solution) (6)

or

Ax,z = Ay,z = 0 on z = 0 (A solution). (7)

We note that the particular boundary conditions (5) and (6) fix the
value of A on z = L or 0, respectively. In all other combinations,
the value of A is not fixed and the magnetic helicity could exhibit
an unphysical drift (Brandenburg, Dobler & Subramanian 2002).
However, in this paper we study magnetic helicity density and its
flux only in situations where either (5) or (6) is used.

We recall that, even though there is no � effect, i.e. no mean flow
in the y direction, we shall allow for a flow U in the z direction. In
a disc, this would correspond to a vertical outflow, while in a star
this might locally be associated with meridional circulation.

2.2 Magnetic helicity conservation

In this paper, we will study the evolution of magnetic helicity of
mean and fluctuating fields. In our gauge, the evolution of the mag-
netic helicity density of the mean field, hm = A · B, is given by

∂hm

∂t
= 2E · B − 2ημ0 J · B − ∇ · Fm, (8)

where Fm = E × A is the flux of magnetic helicity of the
mean magnetic field. Under the assumption of scale separation,
Subramanian & Brandenburg (2006) have defined a magnetic he-
licity density of the small-scale field in terms of its mutual linkages.
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They derived an evolution equation for the magnetic helicity density
of the small-scale field,

∂hf

∂t
= −2E · B − 2ημ0 j · b − ∇ · Ff, (9)

where Ff is the flux of magnetic helicity density of the fluctu-
ating field. Equation (9) is similar to equation (8), except that
E · B appears with the opposite sign. This implies that turbulent
amplification and diffusion of mean magnetic field (characterized
by the E term) cannot change the total magnetic helicity density,
h = hm + hf , which therefore obeys the equation

∂h

∂t
= −2ημ0 J · B − ∇ · F, (10)

where F = Fm + Ff is the total magnetic helicity flux, and J · B =
J · B + j · b is the total current helicity density.

2.3 Dynamical quenching formalism

In order to satisfy the evolution equation for the total magnetic
helicity density (10), we have to solve equation (9) along with
equation (3), which implies that equations (8) and (10) are automat-
ically obeyed. We assume that hf is proportional to μ0 j · b. This
j · b term also modifies the mean electromotive force by producing
an α effect (Pouquet et al. 1976). This is sometimes referred to as
the magnetic α effect,

αM = 1
3 τ j · b/ρ, (11)

where τ is the correlation time of the turbulence. In the special case
of isotropy of the fluctuating field, the ratio between μ0 j · b and
hf is k2

f . Direct three-dimensional turbulence simulations (details
to be published elsewhere) confirm a proportionality, but the ratio
between the two tends to be larger than k2

f . We should therefore
consider k2

f as an adjustable parameter. In the following, we ignore
compressibility effects and assume that the mean density ρ is con-
stant.1 Next, we assume that the turbulence is helical, so there is
also a kinetic α effect proportional to the kinetic helicity,

αK = − 1
3 τω · u, (12)

where ω = ∇ × u is the vorticity. The total α effect is then

α = αK + αM, (13)

and the resulting mean electromotive force is

E = αB − ηtμ0 J, (14)

where

ηt = 1
3 τu2 (15)

is the turbulent magnetic diffusivity. In the following, we consider
ηt and η as given and define their ratio as the magnetic Reynolds
number, Rm = ηt/η. We shall express the strength of the magnetic
field in terms of the equipartition value,

Beq = (μ0ρu2)1/2, (16)

which allows us to determine τ in the mean-field model via 1
3 τ =

μ0ρηt/B
2
eq. With these preparations, we can write the dynamical

quenching formula as

∂αM

∂t
= −2ηtk

2
f

(
E · B
B2

eq

+ αM

Rm

)
− ∂

∂z
Fα, (17)

1 Note that a constant mean density implies that there must exist a small-scale
mass flux compensating the losses associated with the mass flux ρU .

where Fα is related to the mean magnetic helicity flux of the fluc-
tuating field via

Fα = μ0ρηtk
2
f

B2
eq

Ff . (18)

In order to compute mean-field models, we have to solve equa-
tion (3) together with equation (17) using a closed expression for
the flux Fα . In this paper, we focus on the advective flux propor-
tional to αMU , but in some cases we consider instead the effects
of a turbulent magnetic helicity flux that we model by a Fickian
diffusion term proportional to −κα∇αM, where κα is a diffusion
term that is either zero or otherwise a small fraction of ηt. A more
natural choice might have been κα = ηt, but since the effects of
such diffusive magnetic helicity fluxes have never been seen in sim-
ulations, we felt that it would be more convincing if even a small
fraction of ηt would lead to a notable effect.

In addition, we consider cases where we model magnetic helicity
fluxes by an explicit removal of hf from the domain in regular
time intervals �t . Such an explicit removal of magnetic helicity
associated with the fluctuating field may model the effects of coronal
mass ejections, although one would expect that in reality such an
approach also implies some loss of magnetic helicity associated
with the large-scale field. The removal of the fluctuating magnetic
field was employed by Brandenburg et al. (2002) in connection with
three-dimensional turbulence simulations to demonstrate that it is,
at least in principle, possible to alleviate catastrophic quenching by
an artificial filtering out of small-scale turbulent magnetic fields. In
this paper, we model the occasional removal of hf by resetting its
values

hf → hf − �hf in regular intervals �t, (19)

where �hf = εhf is chosen to be a certain fraction ε of the cur-
rent value of hf . In our one-dimensional model, the corresponding
expression for the flux �F f can be obtained by integration, i.e.

�F f (z, t) =
∫ z

0
�hf (z

′, t) dz′. (20)

Since magnetic helicity densities and their fluxes are proportional
to each other, we have simply

Fα = αMU − κα

∂αM

∂z
+ �Fα, (21)

where �Fα = (μ0ρηtk
2
f /B

2
eq)�F f is defined analogously to equa-

tion (18).
We note that the α effect will produce magnetic fields that have

magnetic helicity with the same sign as that of α, and the rate of

magnetic helicity production is proportional to αB
2
. In the North-

ern hemisphere, we have α > 0, so the mean field should have
positive magnetic helicity. We recall that shear does not contribute
to magnetic helicity production, because the negative electric field
associated with the shear flow, US × B, gives no contribution to
magnetic helicity production, which is proportional to E · B, but it
can still give a contribution to the flux of magnetic helicity. This is
also evident if we write shear using the −SAy x̂ term in equation (2):
after multiplying with B and using Bx = ∂Ay/∂z, we find that this
term can be integrated to give just an additional flux term, 1

2 SA
2
y .

However, this contribution belongs clearly to the magnetic helicity
flux associated with the large-scale field and is therefore unable to
alleviate catastrophic quenching.
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2.4 Model profiles and boundary conditions

We consider a model similar to that of Shukurov et al. (2006) who
adopted linear profiles for αK and U of the form αK = α0z/H

and Uz = U0z/H , where the height H was chosen to be equal to
the domain size, H = L. However, in order to separate boundary
effects from effects of the dynamo we also consider the case where
we extend the domain in the z direction and choose L = 4H and let
αK go smoothly to zero at z = H and Uz either goes to a constant
for z > H or also goes smoothly to zero. Thus, we choose

α = α0
z

H
(z; H,wα), (22)

where we have defined the profile function

(z; H,w) = 1

2

(
1 − tanh

z − H

w

)
, (23)

which is unity for z � H and zero otherwise, and w quantifies the
width of this transition. For the outflow, we choose the function

Uz = U0
z

H

[
1 + (z/H )n

]−1/n
(z; HU, wU ), (24)

with n = 20. Both profiles are shown in Fig. 1. The strictly linear
profiles of Shukurov et al. (2006) can be recovered by taking L =
H , wα → 0 and n → ∞.

As length unit, we take k1 = π/2H , and as time unit we take
(ηtk

2
1)−1. This deviates from Shukurov et al. (2006), who used π/H

as their basic wavenumber. Our motivation for this change is that
now the turbulent decay rate is equal to ηtk

2
1, without an extra 1/4

factor. We adopt non-dimensional measures for α0, U 0 and S, by
defining

Cα = α0

ηtk1
, CU = U0

ηtk1
and CS = S

ηtk
2
1

. (25)

To match the parameters of Shukurov et al. (2006), we note that
CU = 0.6 corresponds to their value of 0.3, and the value kf/k1 =
10 corresponds to their value of 5.

We obtain solutions numerically using two different codes.
One code uses an explicit third-order Runge–Kutta time-stepping
scheme and the other one is a semi-implicit scheme. Both schemes
employ a second-order finite differences. We begin by reporting re-
sults for the original profile of Shukurov et al. (2006) with L = H .

Figure 1. Profiles of α and U for wαk1 = 0.2 and wUk1 = 1.

3 R ESULTS

3.1 Kinematic behaviour of the solutions

When the magnetic field is weak, the back reaction via the Lorentz
force and hence the αM term are negligible. The value of Rm then
does not enter into the theory. The effects of magnetic helicity fluxes
are therefore not important, so we begin by neglecting the outflow
or other transporters of magnetic helicity. For the linear α profile,
we find that the critical value of Cα for dynamo action to occur
is about 5.13. These solutions are oscillatory with a dimensionless
frequency ω̃ ≡ ω/ηtk

2
1 = 1.64. The oscillations are associated with

the migration of the dynamo wave in the positive z direction. This
is shown in Fig. 2 where we compare with the case of a perfectly
conducting boundary condition at z = H for which we find Ccrit

α =
7.12 and ω̃ = 2.28.

The fact that there are oscillatory solutions to the α2 dynamo is
perhaps somewhat unusual, but it is here related to the fact that α

changes sign about the equator. Similar solutions were first found by
Shukurov, Sokolov & Ruzmaikin (1985) and analysed in detail by
Baryshnikova & Shukurov (1987) and Rädler & Bräuer (1987). Os-
cillations have also been seen in other α2 dynamos where α changes

Figure 2. Space–time diagrams for Bx and By for the marginal values of
Cα for L = H with CU = 0 and either the symmetric solution (S) with a
vacuum boundary condition on z = H or the antisymmetric solution (A)
with the perfect conductor boundary condition. In both cases, the critical
value Cα = 5.13 is applied. Light (yellow) shades indicate positive values
and dark (blue) shades indicate negative values.
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sign with depth (Stefani & Gerbeth 2003; Rüdiger & Hollerbach
2004; Rüdiger, Elstner & Ossendrijver 2004; Giesecke, Ziegler &
Rüdiger 2005) and in simulations of helically forced turbulence
with a change of sign about the equator (Mitra et al. 2009). In the
latter case, however, the outer boundaries were perfectly conduct-
ing. In our mean-field model, such a case is also oscillatory, as will
be discussed below.

Note that here we have made the assumption that the solutions are
symmetric about the mid-plane, i.e. Bi(z, t) = Bi(−z, t) for i = x

or y. For the application to real systems, such a symmetry condition
can only be justified if the symmetric solution is more easily excited
than the antisymmetric one for which Bi(z, t) = −Bi(−z, t) for
i = x or y. This is indeed the case when we adopt the vacuum
condition at z = H , because the antisymmetric solution has Ccrit

α =
7.14 in that case. However, this is not the case for the perfect
conductor boundary condition for which the antisymmetric solution
has Ccrit

α = 5.12. We remark that there is a striking correspondence
in the critical Cα values between the antisymmetric solution with
perfect conductor boundary condition and the symmetric solution
with vacuum condition on the one hand, and the symmetric solution
with perfect conductor condition and the antisymmetric solution
with vacuum condition on the other hand.

In the following, we consider both symmetric solutions using
the vacuum boundary conditions, as well as antisymmetric ones
using the perfect conductor boundary condition, which correspond
in each case to the most easily excited mode. In the cases where we
use a vacuum condition, we shall sometimes also apply an outflow.
This makes the dynamo somewhat harder to excite and raises Ccrit

α

from 5.12 to 5.60 for CU = 0.6, but the associated magnetic he-
licity flux alleviates catastrophic quenching in the non-linear case.
Alternatively, we consider an explicit removal of magnetic helicity
to alleviate catastrophic quenching. In cases with perfect conductor
boundary conditions, the most easily excited mode is antisymmetric
about the equator, which corresponds to a boundary condition that
permits a magnetic helicity flux through the equator. This would
not be the case for the symmetric solutions.

3.2 Saturation behaviour for different values of Rm

We now consider the saturated state for a value of Cα that is su-
percritical for dynamo action. In the following, we choose Cα = 8.
Throughout this paper, we assume kf/k1 = 10 for the scale sepa-
ration ratio. This corresponds to the value of 5 in Shukurov et al.
(2006), where k1 was defined differently. The dynamo saturates by
building up negative αM when αK is positive. This diminishes the
total α in equation (13) and saturates the dynamo. The strength of
this quenching can be alleviated by magnetic helicity fluxes that
lower the negative value of αM.

We plot in Fig. 3 the dependence of the saturation field strength
Bsat, defined here as the maximum of |B(z)| at the time of saturation.
To monitor the degree of quenching, we also plot in Fig. 3 the Rm

dependence of the maximum of the negative value of αM at the time
when the dynamo has saturated and reached a steady state. The
maximum value of −αM is lowered by about 5 per cent from 1.8
to 1.7 in units of ηtk1 (see Fig. 3). Finally, we recall that for the α2

dynamos considered here both Bx and By oscillate, but their relative

phase shift is such that B
2

is non-oscillatory. The normalized cycle
frequency, ω̃ ≡ ω/ηtk1, is also plotted in Fig. 3 as a function of Rm.
It is somewhat surprising that ω does not strongly depend on Rm.
One may have expected that the cycle frequency could scale with
the inverse resistive time η k2

1. On the other hand, for oscillatory α�

dynamos the cycle frequency is known to scale with ηtk
2
1 (Blackman

Figure 3. Scaling of the extremal value of αM, the saturation field strength
Bsat and the cycle frequency ω with Rm and either CU = 0.6 (solid lines) or
CU = 0 (dashed lines).

& Brandenburg 2002), although that value could decrease if ηt(B)
is strongly quenched. However, simulations only give evidence for
mild quenching (Brandenburg et al. 2008; Käpylä & Brandenburg
2009).

3.3 Helicity fluxes through the equator

We have seen in Section 3.1 that in the perfect conductor case
the antisymmetric solutions are the most easily excited ones. The
boundary conditions for antisymmetric solutions permit magnetic
helicity transfer through the equator. A possible candidate for driv-
ing a flux through the equator would be a diffusive flux driven by the
∇αM term. In Fig. 4, we plot the Rm dependence of max(−αM), Bsat

and ω̃ for κ̃α = 0.05 and 0. Again, catastrophic α quenching is
alleviated by the action of a magnetic helicity flux, but this time it
is through the equator. The maximum value of −αM is lowered by
15 per cent from 2.35 to 2.15 in units of ηtk1 (see Fig. 4). Again,
the cycle frequency is not changed significantly.

In Fig. 5, we compare the profiles of hm, hf, F m and F f for the
most easily excited solution with vacuum and perfect conductor
boundary conditions on z = L. In all cases, we have hm = hf = 0
at the mid-plane due to symmetry, and at z = L we have hm = 0
and hf 	= 0. It turns out that the magnetic helicity flux of the small-
scale field is balanced nearly exactly by that of the mean field. This
agrees with the expectation of Blackman & Brandenburg (2003)
who argued that both should be shed at nearly the same rate.
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Figure 4. Same as Fig. 3, but for antisymmetric solutions in a model with
perfect conductor boundary conditions with CU = 0 and κ̃α ≡ κα/ηt = 0.05
(solid lines) or 0 (dashed lines).

The ad hoc assumption of a turbulent magnetic helicity flux is
plausible and has of course been made in the past (Kleeorin et al.
2002), but its effect in alleviating catastrophic quenching has not
yet been seen in earlier three-dimensional turbulence simulations
(Brandenburg & Dobler 2001; Brandenburg 2001b). However, ex-
cept for the effects of boundaries, the conditions in those simulation
were essentially homogeneous and the gradients of magnetic he-
licity density may have been just too small. It would therefore be
important to reconsider the question of diffusive helicity fluxes in
future simulations of inhomogeneous helical turbulence.

3.4 Occasional removal of h f

Catastrophic quenching can also be alleviated by the artificial re-
moval of small-scale magnetic fields (see equation 19). We consider
the saturation strength of the magnetic field, Bsat, to characterize
the alleviating effect of small-scale magnetic helicity losses. It is
not surprising that the dynamo becomes stronger (Bsat increases)
when the fraction of small-scale field removal ε is increased (upper
panel of Fig. 6) or the time interval of field removal is decreased
(lower panel of Fig. 6). These dependencies follow approximate
power laws,

Bsat/Beq ≈ 0.17 ε1/2 ≈ 0.024
(
�tηtk

2
1

)−1/2
, (26)

suggesting that even relatively small amounts of magnetic helicity
removal in long intervals can have an effect.

Figure 5. Mean magnetic helicity densities of mean and fluctuating fields
as well as mean magnetic helicity fluxes of mean and fluctuating fields
as functions of z for the S solution with vacuum boundary condition and
advective flux with CU = 0.6 (upper two panels) and for the A solution with
perfect conductor boundary condition and diffusive flux with κ̃α = 0.05
(lower two panels). The profiles of hf have been scaled by a factor of
10 to make them more clearly visible. In all cases, we used Cα = 8 and
Rm = 105.

We have also performed some numerical experiments where the
magnetic helicity associated with the small-scale field is only re-
moved near the surface layers. However, in those cases the catas-
trophic quenching was not notably alleviated. This can be explained
by noting that, in the absence of additional magnetic helicity fluxes
in the interior, there is still a build-up of hf in the interior which
quenches the α effect catastrophically.

3.5 Magnetic helicity density and flux profiles

In an attempt to understand further the evolution of magnetic helicity
we have performed calculations where the magnetic helicity flux
of the fluctuating field was forced to vanish at the surface. This
was done by choosing a profile for U that goes to zero at the
surface. However, this invariably led to numerical problems. In order
to clarify the origin of these problems we performed calculations
with a taller domain, L = 4H , using the profiles shown in Fig. 1
and varying the value of H U . For H U → ∞, the flux is still able
to carry magnetic helicity away from the dynamo-active region
into the outer layers z > H (see Fig. 7). The cyclic dynamo in
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Figure 6. Saturation field strength versus ε for �tηtk
2
1 = 0.25 (upper panel)

and versus �tηtk
2
1 for ε = 0.1 (lower panel) in a model with Cα = 8, Rm =

105 and CU = CS = κα = 0.

0 ≤ z ≤ H operates very much like in the case of a smaller domain
(Fig. 2), except that the critical value of Cα is now lowered to Ccrit

α =
4.32.

However, for H U = 3H a problem arises when a parcel of posi-
tive magnetic helicity that is shed early on from the dynamo-active

Figure 7. Space–time diagrams for Bx and By , as well as the magnetic
helicity densities hm and hf for L = 4H , Cα = 8, CU = 0.6 and HU → ∞.
The white horizontal line marks the location z = H . Light (yellow) shades
indicate positive values and dark (blue) shades indicate negative values.

region reaches the upper layers at z ≈ 3H , through which now
no magnetic helicity can be transmitted. Positive magnetic helicity
piles up into a δ function near z ≈ 3H until it cannot be numeri-
cally resolved any more. At higher resolution, the evolution can be
followed a little longer, but the problem cannot be removed. This
demonstrates again that, once a magnetic helicity flux is initiated,
there is no way to stop it locally. There is also no tendency for an
annihilation between magnetic helicities of mean and fluctuating
fields.

The fact that positive magnetic helicity is produced is somewhat
unexpected, because for α > 0 the magnetic helicity production
is positive definite. However, this can be traced back to the term
ηt J · B, which is part of E · B on the right-hand side of equation (9).
Since J · B is positive for positive αK, it is clear that this term
produces positive hf just outside the range where αK is finite and
where it would produce hf of opposite sign.

In another experiment, we adopt a profile for U such that H U

is changed from ∞ to 3H only after a time tηtk
2
1 = 25, which

is when the parcel of positive hf has left the domain. Now it is
indeed negative magnetic helicity that the dynamo tries to shed and
that begins to pile up near z = 3H . However, even though the flux
is relatively weak, the blockage at z = 3H leads eventually to a
problem and, again, to short-wavelength oscillations indicating that
the solution is numerically no longer valid.

These results suggest that the magnetic helicity flux must be
allowed to continue through the rest of the domain. Of course, in
reality there is the possibility of various fluxes, including diffusive
fluxes that have not been included in this particular model. We note,
however, that model calculations with finite κα in equation (21) then
confirm that F f (z, t) becomes constant in the outer parts.

3.6 Magnetic helicity with shear

It is remarkable that the magnetic helicity fluxes of the mean and
fluctuating fields were always equally strong and of opposite sign.
The point of this section is to underline that this is a particular
property of the α2 dynamo, and would not apply to α� dynamos.
In Fig. 8, we show the fluxes of the model with Cα = 8 and CU =
0.6, where we have varied CS in the range from −8 to +8.

Shear gives rise to an additional magnetic helicity flux (Berger
& Ruzmaikin 2000), and the perfect correspondence between mag-
netic helicity fluxes of opposite sign for mean and fluctuating fields
is then broken. This additional flux of magnetic helicity is associ-
ated with the mean field and therefore does not, on its own, alleviate

Figure 8. Dependence of F m(H ) and F f (H ) on the shear parameter for the
S solution in a model with vacuum boundary condition, Cα = 8, CU = 0.6
and Rm = 105.
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catastrophic quenching. However, in this model we have neglected
additional magnetic helicity fluxes arising from the shear that would
be associated with the fluctuating field. An example is the Vishniac–
Cho flux whose effect in a mean-field model was already studied
in an earlier paper (Brandenburg & Subramanian 2005). For C <

−2, the oscillating solutions are no longer preferred and a new so-
lution branch emerges, where the solutions are now non-oscillatory.
Those are also the type of solutions studied by Shukurov et al.
(2006), where CS = −8 was chosen, corresponding to the value −2
in their normalization.

4 C O N C L U S I O N S

The present simulations have confirmed that in finite domains mag-
netic helicity losses through local fluxes are able to alleviate catas-
trophic quenching. Without such fluxes, the energy of the mean
field goes to zero in the limit of large Rm, while in the presence
of such fluxes |B| reaches values that are about 5 per cent of the
equipartition value. We emphasize at this point that this applies to
the case of an α2 dynamo. For an α� dynamo, the mean field can
reach larger values, depending on the amount of shear. For example
for the model shown in Fig. 8, the field strength in units of the
equipartition value rises from 5 per cent without shear to about 36
per cent with negative shear (CS = −8), while for positive shear
it stays around 5 per cent. We also emphasize that the difference
between the two cases with and without helicity fluxes is rather
weak for Rm ≤ 103, so one really has to reach values around Rm ≤
104 or Rm ≤ 105. Such high values of Rm are not currently feasible
with three-dimensional turbulence simulations.

The other surprising result is that it is not possible to dissipate
magnetic helicity flux locally once it is initiated. If the magnetic
helicity flux of the small-scale field has already left the dynamo-
active domain, it has to stay constant in the steady state. By adding
a diffusive flux, the boundary layer in the magnetic helicity of the
small-scale field could be smoothed out, but this contribution would
then carry the same amount of energy as before, although now by
other means.

In the presence of shear, there are additional contributions to
the magnetic helicity flux associated with the mean magnetic field.
There are first of all the fluxes associated with the mean field it-
self, but those fluxes cannot contribute to alleviating catastrophic
quenching on their own. However, earlier work has shown that in
the presence of shear there are also additional contributions associ-
ated with the fluctuating field (Vishniac & Cho 2001; Subramanian
& Brandenburg 2004, 2006). Those terms have not been included
in the present work, because they have already been studied in an
earlier paper (Brandenburg & Subramanian 2005).

Several new issues have emerged from the present study. The fact
that diffusive magnetic helicity fluxes through the equator can allevi-
ate catastrophic quenching is not surprising as such, but its effects in
alleviating catastrophic saturation behaviour in three-dimensional
turbulence simulations have not yet been reported (Brandenburg
& Dobler 2001; Brandenburg 2001b). On the other hand, simu-
lations of forced turbulence in spherical shells with an equator
did show near-equipartition strength saturation fields (Mitra et al.
2009), although the values of Rm were typically below 20, so it was
not possible to draw conclusions about catastrophic quenching. A
new dedicated attempt in that direction would be worthwhile using
driven turbulence, but now with a linear gradient of its intensity and
in the Cartesian geometry.

In view of applications to the Sun and other stars, another impor-
tant development would be to extend the present work to spherical

domains. Again, some work in that direction was already reported
in Brandenburg et al. (2007), but none of these models used diffu-
sive fluxes, nor has any attempt been made to model the Sun. This
would now be an important target for future research.
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We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs
of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from
the small-scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion
coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated
turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to
alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic
helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic
potential vanishes, the pseudo-Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive
gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically
steady state, the time-averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The generation of magnetic fields on scales larger than the
eddy scale of the underlying turbulence in astrophysical
bodies has posed a major problem. Magnetic helicity is be-
lieved to play an important role in this process (Branden-
burg & Subramanian 2005a). The magnetic helicity den-
sity, defined by A · B, where B = ∇ × A is the magnetic
field and A is the corresponding magnetic vector poten-
tial, is important because at large scales it is produced in
many dynamos. This has been demonstrated for dynamos
based on the α effect (Shukurov et al. 2006; Brandenburg
et al. 2009), the shear-current effect (Brandenburg & Sub-
ramanian 2005b), and the incoherent α-shear effect (Bran-
denburg et al. 2008). The volume integral of the magnetic
helicity density over periodic domains (as well as domains
with perfect-conductor boundary conditions or infinite do-
mains where the magnetic field and the vector potential de-
cays fast enough at infinity) is a conserved quantity in ideal
MHD. This conservation is also believed to be recovered
in the limit of infinite magnetic Reynolds number in non-
ideal MHD (Berger 1984). This implies that for finite (but
large) magnetic Reynolds numbers magnetic helicity can
decay only through microscopic resistivity. This would in
turn control the saturation time and cycle periods of large-
scale helical magnetic field which would be too slow to
explain the observed variations of magnetic fields in astro-

� Corresponding author: dhruba.mitra@gmail.com

physical settings, such as for example the 11 year variation
of the large-scale fields during the solar cycle.

A possible way out of this deadlock is provided by
fluxes of magnetic helicity out of the domain (Blackman
& Field 2000; Kleeorin et al. 2000). In the case of the solar
dynamo, such a flux could be out of the domain, mediated
by coronal mass ejections, or it could be across the equator,
mediated by internal gradients within the domain. Several
possible candidates for magnetic helicity fluxes have been
proposed (Kleeorin & Rogachevskii 1999; Vishniac & Cho
2001; Subramanian & Brandenburg 2004).

In this paper we measure the diffusive flux across the
domain with two different signs of magnetic helicity. This
measurement, however, poses an additional difficulty due
to the fact that neither the flux nor the magnetic helic-
ity density remain invariant under the gauge transformation
A → A+ ∇Λ, up to which the vector potential is defined.
This constitutes a gauge problem. This problem, however,
does not arise in homogeneous (or nearly homogeneous)
domains with periodic or perfect-conductor boundary con-
ditions, or in infinitely large domains where both the mag-
netic field and the vector potential decay fast enough at in-
finity. In these cases the volume integral of magnetic he-
licity is gauge-invariant, because surface terms vanish and
∇ · B = 0, so that

∫
B · ∇ΛdV = −

∫
Λ∇ · B dV = 0.

However, in practice we are often interested in finite or open
domains with more realistic boundary conditions. Also, if
we are to talk meaningfully about the exchange of magnetic
helicity between two parts of the domain we need to evalu-
ate changes in magnetic helicity densities locally even if the

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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integral of the magnetic helicity density over the whole do-
main is gauge-invariant. An important question then is how
to calculate this quantity across arbitrary surfaces in numer-
ical simulations. Ideally one would like to have a gauge-
invariant description of magnetic helicity. A number of sug-
gestions have been put forward in the literature (Berger &
Field 1984; Subramanian & Brandenburg 2006). In practice,
however, calculating the gauge-invariant volume integral of
magnetic helicity poses an awkward complication and may
not be the quantity relevant for dynamo quenching (Sub-
ramanian & Brandenburg 2006). In this paper, to partially
address this question, we take an alternative view and try
to compare and contrast the magnetic helicity and its flux
across the domain in three different gauges that are often
used in numerical simulations.

2 Model and background

The setup in this paper is inspired by the recent work of Mi-
tra et al. (2009), who considered a wedge-shaped domain
encompassing parts of both the southern and northern hemi-
spheres. Direct numerical simulations (DNS) of the com-
pressible MHD equations with an external force which in-
jected negative (positive) helicity in the northern (southern)
hemisphere shows a dynamo with polarity reversals, oscilla-
tions and equatorward migration of magnetic activity. It was
further shown, using mean-field models, that such a dynamo
is well described by an α2 dynamo, where α has positive
(negative) sign in the northern (southern) hemisphere. How-
ever, the mean-field dynamo showed catastrophic quench-
ing, i.e., the ratio of magnetic energy to the equipartition
magnetic energy decreases as R−1

m , where Rm is the mag-
netic Reynolds number. Such catastrophic quenching could
potentially be alleviated by a mean flux of small-scale mag-
netic helicity across the equator (Brandenburg et al. 2009).
Diffusive flux of this kind has previously been employed in
mean-field models on empirical grounds (Covas et al. 1998;
Kleeorin et al. 2000). Using a one-dimensional mean-field
model of an α2 dynamo with positive α in the north and
negative in the south, it was possible to show that for large
enough values ofRm catastrophic quenching is indeed alle-
viated (Brandenburg et al. 2009). However, three questions
still remained:

1. Can such a diffusive flux result from DNS?
2. Is it strong enough to alleviate catastrophic quenching?
3. When is it independent of the gauge chosen?

In this paper we provide partial answers to these questions.
We proceed by simplifying our problem further, both

conceptually and numerically, by considering simulations
performed in a rectangular Cartesian box with dimensions
Lx×Ly×Lz . The box is divided into two equal cubes along
the z direction, with sides Lx = Ly = Lz/2. We shall refer
to the xy plane at z = 0 as the ‘equator’ and the regions with
positive (negative) z as ‘north’ and ‘south’ respectively. We
shall choose the helicity of the external force such that it has

negative (positive) helicity in the northern (southern) part
of the domain. All the sides of the simulation domain are
chosen to have periodic boundary conditions. The slowest
resistive decay rate of the mean magnetic field is ηk21 , where
η is the microscopic magnetic diffusivity and k1 = π/Lz is
the lowest wavenumber of the domain.

We employ two different random forcing functions: one
where the helicity of the forcing function varies sinusoidally
with z (Model A) and one where it varies linearly with
z (Model B). This also leads to a corresponding variation
of the kinetic and small-scale current helicities in the do-
main. Model A minimizes the possibility of boundary ef-
fects, while Model B employs the same profile as that used
in an earlier mean-field model (Brandenburg et al. 2009).
The typical wavenumber of the forcing function is chosen
to be kf = 20k1 in Model A and kf = 16k1 in Model B. An
important control parameter of our simulations is the mag-
netic Reynolds number, Rm = urms/ηkf , which is varied
between 2 and 68, although we also present a result with a
larger value of Rm. This last simulation may not have run
long enough and will therefore not be analyzed in detailed.

We perform DNS of the equations of compressible
MHD for an isothermal gas with constant sound speed cs,

DtU = −c2s∇ ln ρ+
1

ρ
J × B + Fvisc + f , (1)

Dt ln ρ = −∇ · U , (2)

∂tA = U × B − ημ0J − ∇Ψ, (3)

where Fvisc = (μ/ρ)(∇2U + 1
3∇∇ · U) is the viscous

force when the dynamic viscosity μ is constant (Model A),
and Fvisc = ν(∇2U + 1

3∇∇ · U + 2S ln ρ) is the viscous
force when the kinematic viscosity ν is constant (Model B),
U is the velocity, J = ∇ ×B/μ0 is the current density, μ0

is the vacuum permeability (in the following we measure
the magnetic field in Alfvén units by setting μ0 = 1 every-
where), ρ is the density, Ψ is the electrostatic potential, and
Dt ≡ ∂t+U ·∇ is the advective derivative. Here, f(x, t) is
an external random white-in-time helical function of space
and time. The simulations were performed with the PENCIL

CODE1, which uses sixth-order explicit finite differences in
space and third order accurate time stepping method. We
use a numerical resolution of 128× 128× 256 meshpoints.

These simulations in a Cartesian box capture the essen-
tial aspects of the simulations of Mitra et al. (2009) in spher-
ical wedge-shaped domains. In particular, in this case we
also observe the generation of large-scale magnetic fields
which show oscillations on dynamical time scales, reversals
of polarity and equatorward migration, as can be seen from
the sequence of snapshots in Fig. 1 for a run withRm = 68.
Here we express time in units of the expected turbulent dif-
fusion time, T = (ηt0k

2
1)

−1, where ηt0 = urms/3kf is used
as the reference value (Sur et al. 2008).

Below we shall employ this setup to study the magnetic
helicity and its flux. We shall discuss the issue of gauge-
dependence in Sect. 5.

1 http://www.nordita.org/software/pencil-code/
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Fig. 1 (online colour at: www.an-journal.org) Visualization of the By component of the magnetic field on the periphery of the domain
at different times showing the migration of magnetic patterns from the top and bottom boundaries toward the equator. Yellow (light)
shades denote positive values and blue (dark) shades denote negative values. Time is measured in turbulent diffusion times, T =
(ηt0k

2
1)

−1, where ηt0 = urms/3kf is used as reference.

3 Magnetic helicity fluxes

Let us first summarize the role played by magnetic helicity
and its fluxes in large-scale helical dynamos. In the spirit of
mean-field theory, we define large-scale (or mean) quanti-
ties, denoted by an overbar, as a horizontal average taken
over the x and y directions. In addition, we denote a vol-
ume average by angular brackets, 〈·〉. The magnetic helicity
density is denoted by

hM ≡ A · B. (4)

In general the evolution equation of hM can be written down
using the MHD equations, which yields

∂th
M = −2E · B − ∇ · FH, (5)

where

FH = E × A+ΨB (6)

is the magnetic helicity flux and E is the electric field,
which is given by

E = −U × B + ηJ . (7)

Given that our system is statistically homogeneous in the
horizontal directions, we consider the evolution equation for
the horizontally averaged magnetic helicity density,

∂th
M

= −2ηJ · B − ∇ · FH
, (8)

where the contribution from the full electromotive force,
U×B, has dropped out after taking the dot product with B.
However, the mean electromotive force from the fluctuating
fields, E = u × b, enters the evolution of the mean fields, so
this contribution does not vanish if we consider separately

the contributions to h
M

that result from mean and fluctuat-
ing fields, i.e.

∂th
M

m = 2E · B − 2ηJ · B − ∇ · FH

m , (9)

∂th
M

f = −2E · B − 2ηj · b − ∇ · FH

f , (10)

where

FH

m = E × A+ΨB, (11)

FH

f = e × a+ ψb, (12)

and Ψ = Ψ+ ψ.
In mean-field dynamo theory one solves the evolution

equation for B, so FH

m is known explicitly from the ac-

tual mean fields. However, the evolution equation for h
M

f

is not automatically obeyed in the usual mean-field treat-
ment. This is the reason why in the dynamical quenching
formalism this equation is added as an additional constraint

equation. The terms h
M

f and j · b ≈ k2f h
M

f are coupled to
the mean-field equations through an additional contribution

to the α effect with a term proportional to k2f h
M

f . However,

the coupling of the flux term FH

f is less clear, because there
are several possibilities and their relative importance is not
well established.

In this paper we are primarily interested in FH

f across
the equator. We assume that this flux can be written in terms
of the gradient of the magnetic helicity density via a Fickian
diffusion law, i.e.,

FH

f = −κf∇h
M

f , (13)

where κf is an effective diffusion coefficient for the mag-
netic helicity density.

There are several points to note regarding Eq. (13).
Firstly, both the magnetic helicity and its flux are gauge-
dependent. Hence this expression should in principle de-
pend on the gauge we choose. On the other hand, catas-
trophic quenching is a physically observable phenomenon
that should not depend on the particular gauge chosen. Sec-
ondly, we recall that Eq. (13) is purely a conjecture at this
stage, and it is the aim of this paper to test this conjecture.
Thirdly, Eq. (13) is not the only form of flux of magnetic he-
licity possible. Two other obvious candidates are the advec-
tive flux and the Vishniac-Cho flux (Vishniac & Cho 2001).

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Table 1 Dependence of B
2
, normalized by B2

eq, the slopes of
the three terms on the RHS of Eq. (10), normalized by ηt0B

2
eq, as

well as the value of κf/ηt0.

Run Rm B
2

2E ·B 2ηj · b ∇ · FH
f κf/ηt0

B1 2 1.1 9.42 −9.38 −0.04 0.41
B2 5 2.2 11.18 −11.14 −0.04 0.34
B3 15 2.0 4.54 −4.52 −0.02 0.27
B4 33 1.7 2.28 −2.27 −0.01 0.31
B5 68 0.8 1.15 −1.12 −0.03 0.34

However, none of them can be of importance to the prob-
lem at hand, because we have neither a large-scale velocity
(thus ruling out advective flux) nor a large-scale shear (thus
ruling out Vishniac-Cho flux).

4 Diffusive flux and Rm dependence

Let us postpone the discussion of the complications arising
from the choice of gauge until Sect. 5 and use the resistive
gauge for the results reported in this section, i.e. we set

Ψ = η∇ · A. (14)

We then calculate FH

f and h
M

f as functions of z from our
simulations, time-average both of them and use Eq. (13) to

calculate κf from a least-square fit of FH

f versus −∇h
M

f

within the range −1.3 ≤ k1z ≤ 1.3. The values of κf as a
function of Rm is given in the last column of Table 1.

In order to determine the relative importance of equato-
rial magnetic helicity fluxes, we now consider individually
the three terms on the RHS of Eq. (10). Within the range
−1.3 ≤ k1z ≤ 1.3, all three terms vary roughly linearly
with z. We therefore determine the slope of this dependence.
In Table 1 we compare these three terms at k1z = −1, eval-
uated in units of ηt0k1B2

eq, as well as the value of κf/ηt0.
In Fig. 2 we show the z dependence of these three terms for
Run B5, where Rm = 68. The values of κf as a function of
Rm is given in the last column of Table 1. The z dependence

of FH

f and h
M

f is shown in the last panel of Fig. 2. Note that
the two profiles agree quite well.

We point out that, near z = 0, all simulations show ei-
ther a local reduction in the gradients of the terms on the
RHS of Eq. (10) or even a local reversal of the gradient.
This is likely to be associated with a local reduction in dy-
namo activity near z = 0, where kinetic helicity is zero. The
non-uniformity of the turbulent magnetic field also leads to
transport effects (Brandenburg & Subramanian 2005a) that
may modify the gradient. However, we shall not pursue this
question further here.

Looking at Table 1, we see that the terms 2E · B and
2ηj · b balance each other nearly perfectly, and that only a
small residual is then balanced by the diffusive flux diver-

gence, ∇ · FH

f . For the values of Rm considered here, the

Fig. 2 z dependence of the terms on the RHS of Eq. (10) in the
first two panels and in Eq. (13) for Run B5.

terms 2E · B and 2ηj · b scale with Rm, while the depen-

dence of ∇ · FH

f on Rm is comparatively weak. If catas-
trophic quenching is to be alleviated by the magnetic he-
licity flux, one would expect that at large values of Rm the

terms 2E · B and ∇ · FH

f should balance. At the moment
our values of Rm are still too small by about a factor of 30–
60 (assuming that the same scaling with Rm persists). This
result is compatible with that of earlier mean field models
(Brandenburg et al. 2009). Consequently, we see that the
energy of the mean magnetic field decreases with increas-
ing Rm from 33 to 68; see Fig. 3. For larger values of Rm

the situation is still unclear.

In Table 1, we also give the approximate values of
κf/ηt0. Note that this ratio is always around 0.3 and inde-
pendent of Rm. This is the first time that an estimate for the
diffusion coefficient of the diffusive flux has been obtained.
There exists no theoretical prediction for the value of κf
other than the naive expectation that such a term should be
expected and that its value should be of the order of ηt0.

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 3 Rm dependence of the normalized magnetic energy of
the mean field, 〈B2〉/B2

eq, and the fluctuating field, 〈b2〉/B2
eq,

in the upper panel together with the normalized helicities of the
small-scale magnetic field, a · b kf/B2

eq, the small-scale current
density, j · b/kfB2

eq, and the small-scale velocity, ω · u/kfu2
rms,

at k1z = −1 (i.e. in the south) in the lower panel. (All three helici-
ties are negative in the north and positive in the south.) The shaded
areas indicate that the solutions are different in nature, and that the
simulations may not have run for long enough.

This now allows us to state more precisely the point where
the turbulent diffusive helicity flux becomes comparable
with the resistive term, i.e. we assume κf∇2a · b to become
comparable with 2ηj · b. Using the relation j · b ≈ k2f a · b
(Blackman & Brandenburg 2002), which is confirmed by
the current simulations within a factor of about 2 (see the
second panel of Fig. 3), we find that
κf/2η > (kf/k1)

2, (15)
where we have assumed that the Laplacian of a · b can be
replaced by a k21 factor. Using our empirical finding, κf ≈
ηt0/3, together with the definition ηt0/η ≈ urms/3ηkf =
Rm/3, we arrive at the condition
Rm > 18(kf/k1)

2 ≈ 4600 (for κf to be important), (16)
where we have inserted the value kf/k1 = 16 for the present
simulations. Similarly, large values of Rm for alleviating
catastrophic quenching by turbulent diffusive helicity fluxes
were also found using mean-field modelling (Brandenburg
et al. 2009). Unfortunately, the computing resources are still
not sufficient to verify this in the immediate future.

5 Gauge-dependence of helicity flux

Let us now consider the question of gauge-dependence
of the helicity flux. Equation (10) is obviously gauge-

dependent. However, if, in the statistically steady state, h
M

f

becomes independent of time, we can average this equation
and obtain

∂FH

f

∂z
= −2E · B − 2ηj · b, (17)

where FH

f refers to the z component of FH

f . On the RHS of
this equation the two terms are gauge-independent. There-

fore ∇ · FH

f must also be gauge-independent. The same

applies also to FH

m and FH
; see Eq. (8). We have con-

firmed that, in the steady state, h
M

f is statistically steady
and does not show a long-term trend; cf. Fig. 4 for the three

gauges. We note that the fluctuations of h
M

f are typically
much larger for the Weyl gauge than for the other two.

We now verify the expected gauge-independence ex-
plicitly for three different gauges: the Weyl gauge,

Ψ = 0, (18)

the Lorenz gauge (or pseudo-Lorenz gauge)2, defined by

∂tΨ = −c2Ψ∇ · A, (19)

and the resistive gauge, defined by (14) above. We calcu-
late the normalized magnetic helicity for both the mean and
fluctuating parts and the respective fluxes for all the three
gauges. These simulations are done for Model A with low
Rm (Rm ≈ 1.9).

We find the transport coefficient κf in the way described

in the previous section. A snapshot of the mean flux FH

f is
plotted in the top panel of Fig. 5. The flux is different in all
the three gauges. However, when averaged over the horizon-
tal directions as well as time the fluxes in the three different
gauges agree with one another as shown in the bottom panel
of Fig. 5. We find the transport coefficient κf as described
in the previous section and obtain the same value in all the
three gauges.

6 Conclusion

In this paper we use a setup in which the two parts of the
domain have different signs of kinetic and magnetic helici-
ties. Using DNS we show that the flux of magnetic helicity
due to small-scale fields can be described by Fickian diffu-
sion down the gradient of this quantity. The corresponding
diffusion coefficient is approximately independent of Rm.
However, in the range of Rm values considered here, the
flux is not big enough to alleviate catastrophic quenching.
The critical value of Rm for the flux to become important
is proportional to the square of the scale separation ratio.
In the present case, where this ratio is 16, the critical value
of Rm is estimated to be 4600. We have also calculated the
flux and the diffusion coefficient in the three gauges dis-
cussed above and have found the fluxes to be independent

2 In fact, this is not the true Lorenz gauge because we use velocity of
sound (Brandenburg & Käpylä 2007) instead of the velocity of light which
appears in the original Lorenz gauge
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Fig. 4 Plot of h
M
f as a function of time in the statistically sta-

tionary state for k1z = −1 (south, top panel) and k1z = 1 (north,
bottom panel) for the three different gauges, Weyl gauge (open
circle), Lorenz gauge (line) and resistive gauge (broken line).

of the choice of these gauges. This is explained by the fact
that in the steady state the divergence of magnetic helicity
flux is balanced by terms that are gauge-independent.

Several immediate improvements on this study spring
to mind. One is to compare our results with the gauge-
independent magnetic helicity of Berger & Field (1984) and
the corresponding magnetic helicity flux. The second is to
extend the present study to higher values of Rm to under-
stand the asymptotic behavior of the flux. Finally, it may be
useful to compare the results for different profiles of kinetic
helicity to see whether or not our results depend on such
details.
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Fig. 5 Comparison of the flux FH
f (z, t) at a randomly chosen

instant (upper panel) and its time average FH
f (z) for the three dif-

ferent gauges. Lorenz gauge (◦), Weyl gauge (�) and the resistive
gauge (·). The instantaneous flux is plotted in the top panel and the
time-averaged flux is plotted in the bottom panel.
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Magnetic helicity fluxes are investigated in a family of gauges in which the contribution from ideal
magnetohydrodynamics takes the form of a purely advective flux. Numerical simulations of
magnetohydrodynamic turbulence in this advective gauge family exhibit instabilities triggered by
the build-up of unphysical irrotational contributions to the magnetic vector potential. As a remedy,
the vector potential is evolved in a numerically well behaved gauge, from which the advective
vector potential is obtained by a gauge transformation. In the kinematic regime, the magnetic
helicity density evolves similarly to a passive scalar when resistivity is small and turbulent mixing
is mild, i.e., when the fluid Reynolds number is not too large. In the dynamical regime, resistive
contributions to the magnetic helicity flux in the advective gauge are found to be significant owing
to the development of small length scales in the irrotational part of the magnetic vector potential.
© 2011 American Institute of Physics. �doi:10.1063/1.3533656�

I. INTRODUCTION

Most astrophysical and laboratory plasmas are good con-
ductors. This, together with high-speed flows and large
length scales, nearly universal in the astrophysical context,
makes for large magnetic Reynolds numbers. In the limit of
infinitely large magnetic Reynolds number, and for domains
with closed boundaries, total magnetic helicity is a conserved
quantity. Here, an analogy can be drawn with mass conser-
vation in domains whose boundaries are closed to mass flux.
Furthermore, in open domains, the change in total mass is
governed by the mass flux across open surfaces. In ideal
magnetohydrodynamics �MHD�, a similar property holds for
the total magnetic helicity. But unlike mass, magnetic helic-
ity depends on the choice of gauge. In the special case of the
advective gauge, the magnetic helicity flux is given by the
velocity times the magnetic helicity density,1 making this
gauge particularly interesting for studying pointwise proper-
ties of magnetic helicity. This is an important goal of this
paper.

Magnetic helicity plays an important role in many fields
of plasma physics and astrophysics, and has applications
ranging from tokamaks and other plasma confinement ma-
chines, to dynamo action in the Sun and the galaxy. Our
physical understanding of the role of magnetic helicity in
MHD is greatly aided by concepts such as Taylor relaxation,2

selective decay,3 and the inverse cascade of magnetic
helicity.4

Furthermore, magnetic helicity is a crucial ingredient of
the turbulent dynamos which are believed to be the source of
the equipartition magnetic fields in astrophysical bodies such
as stars and galaxies.5 In all such cases the characteristic
length scales of the dynamo generated magnetic field exceed
those of the fluid’s energy carrying scale. In dynamo theory,
the formation of such a large-scale magnetic field is typically
possible through the � effect, which is nonzero for helical
turbulent flows. In periodic boxes with helical turbulence,

the � effect becomes strongly quenched when the �appropri-
ately normalized� magnetic helicity in the small-scale field
�i.e., scales that are smaller than the energy-carrying scale of
turbulent fluid� is comparable to the helicity in the small-
scale velocity. Conservation of magnetic helicity implies that
the helicity in small- and large-scale fields will have compa-
rable magnitudes, so the quenching of the large-scale dy-
namo will occur for weak large-scale fields. This �
quenching6,7 increases with scale separation and endures for
as long as magnetic helicity is nearly conserved, a resistive
time that scales with the magnetic Reynolds number
ReM �UL /�. The quenching is called “catastrophic” because
for the Sun ReM �109 and the galaxy ReM �1015, and their
resistive timescales are problematically long. This rapid pre-
resistive saturation of the dynamo generated field poses clear
difficulties in applying theory to astronomical systems, but it
may be possible to alleviate the problem through magnetic
helicity fluxes.8,9 It should also be pointed out that problems
with catastrophic quenching are often not clearly seen in
present-day simulations.10–12 While trend lines suggest that
catastrophic quenching will occur, simulations at currently
achievable, low to intermediate ReM and scale separation
have shown significant large-scale fields.

There exists reasonable observational evidence is sup-
port of such fluxes of magnetic helicity. The Sun’s surface
magnetic field shows helical structures.13,14 Further, it was
shown15 that the S-shaped �helical� regions which are active
in the corona are precursors of coronal mass ejections
�CMEs� and later16 that those regions are more likely to
erupt. This suggests that the Sun sheds magnetic helicity via
CMEs. Since the Sun’s large-scale magnetic field is believed
to be generated by a helical dynamo17,18 this shedding of
magnetic helicity could play an important role in the 11 year
solar cycle. Physically, magnetic helicity fluxes out of the
domain can be mediated in many ways, such as the afore-
mentioned CMEs for the Sun19 or fountain flows in the case
of galaxies.17 In direct simulations magnetic helicity fluxes
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are permitted by adjusting the boundary conditions, e.g., to
vertical field boundaries, but their actual presence can be
difficult to ascertain. Internal helicity fluxes have also been
found to alleviate � quenching18 in systems with internal
boundaries that separate zones of oppositely signed kinetic
and magnetic helicities.

A difficulty in addressing the generation and transport of
magnetic helicity is its gauge dependence. We denote the
magnetic vector potential as A such that B���A is the
magnetic field. Magnetic helicity H��VA ·BdV is indepen-
dent of the gauge for perfectly conducting boundaries, as
well as periodic boundaries so long as A is also required to
be periodic. However, if one wishes to study the transport of
magnetic helicity for physically motivated systems a nonvol-
ume integral formulation will be needed. Magnetic helicity
density, h�A ·B, the quantity we will be working with,
clearly depends on the gauge choice for A. The gauge depen-
dence of fluxes of mean magnetic helicity contained in the
fluctuating fields was examined via direct numerical simula-
tions �DNS� for three different gauges,20 and it was found
that, averaged over time, they do not depend on the gauge
choice. This is a result of the fact that, for sufficient scale
separation, the magnetic helicity of the fluctuating field can
be expressed as the density of linkages, which in turn is
gauge-invariant.21 This result implies that the study of spe-
cific but useful gauge choices is a meaningful task.

In this work we examine the properties of magnetic he-
licity density in a particularly interesting gauge-family which
we call “advective” because in this gauge the effect of ve-
locity on the evolution equation of magnetic helicity takes
the form of a purely advective term. In previous work1 this
gauge choice was shown to be crucial to understanding mag-
netic helicity fluxes in the presence of shear, including the
Vishniac–Cho flux.22 Unfortunately, evolving A in this gauge
proves numerically unstable. This may be related to earlier
findings in smoothed particle MHD calculations.23,24 There,
the problem was identified as the result of an unconstrained
evolution of vector potential components, which were argued
to be connected with “poor accuracy with respect to
“reverse-advection”-type terms.”23 Our present work clarifies
that this instability is related to the excessive build-up of
irrotational contributions to the magnetic vector potential.
These contributions have no physical meaning, but discreti-
zation errors at small length scales can spoil the solution
dramatically.

We shall therefore describe a novel method for obtaining
A in this gauge by evolving it first in a numerically robust
gauge and then applying a gauge transformation with a si-
multaneously evolved gauge potential. This will be referred
to as the � method throughout the text. Next, we show that
the magnetic helicity density in the advective gauge tends to
be small even pointwise, provided turbulent effects are still
weak, and discuss the analogy with passive scalar transport.
We conclude by pointing out that resistive terms break the
analogy with passive scalar advection through the emergence
of a turbulently diffusive magnetic helicity flux.

II. MAGNETIC EVOLUTION EQUATIONS

A. Weyl and advective gauges

In this work we remain within nonrelativistic MHD and
hence neglect the Faraday displacement current. So the cur-
rent density is given by J=��B, where B is the magnetic
field and we use units where the vacuum permeability is
unity. At the core of MHD is the induction equation

�B

�t
= � � �U � B − �J� , �1�

where U is the velocity and � is the molecular magnetic
diffusivity. Equation �1� can be uncurled to give an evolution
equation for the magnetic vector potential A, but only up to a
gauge choice. In the Weyl gauge, indicated by a superscript
W on the magnetic vector potential, we just have

�AW

�t
= U � B − �J �2�

but by adding the gradient of a scalar field, the vector poten-
tial can be obtained in any other gauge. Of particular interest
to this paper is the advective gauge

Aa = AW + ��W:a, �3�

where �W:a is the gauge potential that transforms from AW to
Aa. We demand that25

DAi
a

Dt
= − Uj,iAj

a − �Ji. �4�

Here, D /Dt=� /�t+U ·� is the advective derivative. Conse-
quently one can show that �W:a obeys the evolution equation
�see Appendix A�

D�W:a

Dt
= − U · AW. �5�

Thus, to obtain Aa, one can either solve Eq. �4� directly or,
alternatively, solve Eq. �2� together with Eq. �5� and use Eq.
�3� to obtain Aa. A possible initial condition for �W:a would
be �W:a=0, in which case Aa=AW initially. For numerical
reasons that will be discussed in more detail below, we shall
consider the indirect method of obtaining the magnetic
vector potential in the advective gauge, but starting from
more numerically stable gauge which will be discussed in
Sec. II B.

Variants on the advective gauge have seen significant
use, particularly in DNS with constant imposed shear. Al-
though the magnetic field in such simulations must obey
shearing-periodic boundary condition the vector potential
need not. In particular, the evolution Eq. �2� does not impose
shearing-periodicity on the vector potential, while Eq. �4�
does, enabling shearing-periodic numerical simulations26 in
terms of A.

For our purposes, the importance of Eq. �4� lies in the
form of the magnetic helicity density evolution equation. By
writing the induction equation in the form
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DBi

Dt
= + Ui,jBj − �� · U�Bi − �� � �J�i �6�

computing D�Aa ·B� /Dt=Aa ·DB /Dt+B ·DAa /Dt, and not-
ing that the AiUi,jBj terms from both equations cancel, we
find that

Dha

Dt
= − ha � · U − � · ��J � Aa� − 2�J · B �7�

which shows that in ideal MHD ��=0� under the assumption
of incompressibility �� ·U=0� the magnetic helicity density
in the advective gauge, ha=Aa ·B is just advected with the
flow like a passive scalar, i.e.,

Dha

Dt
= 0 �for � = 0 and � · U = 0� . �8�

In the general case with � ·U�0, the rate of change of the
local value of ha is given by −� · �haU�, which is analogous
to the continuity equation for the fluid density. However, for
��0, there is also a source term

�ha

�t
= − 2�J · B − � · Fa, �9�

as well as a resistive contribution to the magnetic helicity
flux

Fa = haU + �J � Aa. �10�

In this paper we address the question how the �J�Aa con-
tribution scales in the limit �→0, i.e., for large values of
ReM. It could either stay finite, just like the resistive energy
dissipation �J2, which tends to a finite limit5 as �→0, or it
could go to zero like the source term �J ·B.27,28

B. Resistive and advecto-resistive gauges

There are two important issues to be noted about the
equations discussed above. First, for numerical reasons, Eq.
�2� is often replaced by

�Ar

�t
= U � B + ��2Ar, �11�

where Ar is the magnetic vector potential in the resistive
gauge and we have assumed that �=const; otherwise there
would be an additional gradient term of the magnetic diffu-
sivity that results from29

− �J + ��� � · A� = ��2A + �� · A� � � . �12�

This “resistive” gauge introduces an explicit, numerically
stabilizing diffusion term for each component of A. Second,
and again for numerical reasons, Eq. �5� should be solved
with a small diffusion term proportional to �2�W:a. These
two issues are actually connected and can be resolved by
considering the gauge transformation

Aar = Ar + ��r:ar �13�

which allows us to obtain the magnetic vector potential Aar

in the advecto-resistive gauge obeying

DAi
ar

Dt
= − Uj,iAj

ar + ��2Ai
ar, �14�

by solving Eq. �11� for Ar together with

D�r:ar

Dt
= − U · Ar + ��2�r:ar �15�

and finally using the gauge transformation Eq. �13�. For a
full derivation of this equation we refer to Appendix B. Note
that the microscopic magnetic diffusivity automatically en-
ters the �r:ar equation as a diffusion term, which implies that
the �r:ar equation is numerically well behaved.

The magnetic helicity density har=Aar ·B in the advecto-
resistive gauge can be calculated from the magnetic helicity
in the resistive gauge through har=hr+��r:ar ·B, and it obeys

�har

�t
= − 2�J · B − � · Far �16�

with

Far = harU − ��� · Aar�B + �J � Aar. �17�

For comparison, the evolution equation of the magnetic he-
licity density in the resistive gauge is given by an equation
similar to Eq. �16�, but with har being replaced by hr and Far

being replaced by

Fr = hrU − �U · Ar + � � · Ar�B + �J � Ar �18�

which contains a nonadvective velocity driven flux of the
form �U ·Ar�B—even in the ideal case.

C. Numerical details

We perform simulations for isotropically forced, triply
periodic cubic domains with sides of length 2�, as was done
in earlier work.28 The �J ·B term in Eq. �9� implies �and past
simulations have shown� that such a system will experience a
slow, but steady production of magnetic helicity. This is the
price to pay for a system which is both helical, providing us
with a signal, and homogeneous, so avoiding extraneous
magnetic helicity fluxes. In addition to the uncurled induc-
tion Eq. �11� and the gauge transformation evolution Eq.
�15�, we solve

DU

Dt
= − cs

2 � ln � +
cL

�
J � B + Fvisc + f , �19�

D ln �

Dt
= − � · U , �20�

where cs�=const� is the isothermal sound speed, � is the den-
sity, Fvisc=�−1� · �2��S� is the viscous force, Sij =

1
2 �Ui,j

+Uj,i�− 1
3	ij � ·U is the rate of strain tensor, � is the kine-

matic viscosity, f the forcing term, and cL=1 is a prefactor
that can be put to 0 to turn off the Lorentz force in kinematic
calculations. As in earlier work28 the forcing function con-
sists of plane polarized waves whose direction and phase
change randomly from one time step to the next. The modu-
lus of its wavevectors is taken from a band of wavenumbers
around a given average wavenumber kf. The magnetic vector
potential is initialized with a weak nonhelical sine wave
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along one direction. In some cases we shall also consider
solutions to the passive scalar equation in the incompressible
case

DC

Dt
= 
�2C , �21�

where 
 is the passive scalar diffusivity. Following earlier
work,30 we impose a linear gradient in C, i.e., C=Gz+c, and
solve for the departure from this gradient G, i.e.,

Dc

Dt
= 
�2c − GUz, �22�

where GUz acts essentially as a forcing term.
We use the PENCIL CODE �http://pencil-code.

googlecode.com�31 to solve the equations for Ar, U, �r:ar, �,
and in some cases also c. The calculations involving
�r:ar have been carried out with the publicly available
revision r15211 �or similar� of the module special/
advective_gauge.f90.

The control parameters we use are the magnetic
Reynolds number ReM, the magnetic Prandtl number PrM,
and the Schmidt number

ReM �
urms

�kf
, PrM �

�

�
, Sc �

�



, �23�

where urms is the root mean square velocity. We use kf =3k1

where k1, the box wavenumber, is unity. The numerical res-
olution is varied between 323 and 2563 meshpoints for values
of Re and ReM between 3 and 300. In one case we used
ReM 	800, which was only possible because in that case we
used PrM =10, so that most of the energy gets dissipated vis-
cously, leaving relatively little magnetic energy at high
wavenumbers.32

III. IMPORTANCE OF MAGNETIC HELICITY DENSITY

A. Implications of Eq. „7… for dynamo theory

Magnetic helicity is not only of interest by being a con-
served quantity in ideal MHD, but also by being the basis of
a methodology to treat nonlinear helical MHD dynamos,
namely, dynamical � quenching.33 This methodology relates
the current helicity in small scale fields with the magnetic
helicity in small-scale fields, j ·b
kf

2a ·b, and invokes the
magnetic � effect.4 The evolution equation of the magnetic
helicity density then becomes the evolution equation of the
magnetic part of the � effect and the nonlinear evolution of
the dynamo can be modeled. This methodology has been
used successfully in systems where no net helicity flux is
possible, and initial work invoking the methodology has cap-
tured the behavior of at least one system with finite helicity
fluxes.34 A major prediction of the theory is that in the ab-
sence of preferential helicity fluxes of small-scale fields, dy-
namo action is quenched to subequipartition mean field
strengths. This phenomenon is sometimes referred to as
“catastrophic quenching.”

B. Magnetic helicity as passive scalar

In the advective and advecto-resistive gauges, the veloc-
ity appears in the evolution equations of the magnetic helic-
ity density, Eqs. �7� and �16�, only as advection terms in the
fluxes, Eqs. �10� and �17�. In the limit of ideal, incompress-
ible, kinematic MHD, Eq. �7� is the evolution equation for a
passive scalar. Even in nonideal MHD, if the fluctuations
of har due to the velocity field U were purely advective
in nature �i.e., passive�, magnetic helicity transport would
only be resistive, large-scale advective, and/or turbulently
diffusive. This would forbid the preferential export of
small-scale magnetic helicity and might call for alternate so-
lutions to the catastrophic quenching problem than helicity
fluxes.18

While in ideal MHD ��=0� the resistive terms in Eq. �7�
vanish, resistive terms need not vanish in the limit of �→0
�high ReM�. For example, in a turbulent flow, Ohmic dissi-
pation �J2 tends to a finite value as � decreases. The need
for nonresistive solutions to the build-up of magnetic helicity
is therefore not a given. We will examine this by performing
kinematic simulations where the Lorentz force is turned off,
i.e., cL=0.

If the Lorentz force is significant, the fluctuations of har

and U might be correlated beyond simple turbulent diffusion
concerns �i.e., the fluctuations of har could drive flow pat-
terns�. In the limit of incompressible flows, if the helicity is
uniform, then the only source terms for helicity patterns of
finite k are the resistive terms. The terms are small compared
to dimensional estimates for the velocity terms when
ReM �1. We will look for signals of magnetic helicity
transport by examining spectra of hr and har as �pseudo�
scalars, together with spectra of a true passive scalar. As
we will show, the advecto-resistive gauge is adequately
efficient at turbulently diffusing magnetic helicity that no
inertial range for the magnetic helicity density can be
identified. However, the spectra of hr help elucidate previous
results34 which found diffusive fluxes, but at values well
below turbulent diffusivities. Instead, our spectra show
clear diffusive behavior in the inertial range, but the
mere existence of the inertial range implies nondiffusive be-
havior.

We emphasize that our spectra of hr and har have nothing
to do with the usual magnetic helicity spectrum that obeys a
realizability condition and whose integral gives the volume-
averaged magnetic helicity. Here we are looking instead at
the power of the magnetic helicity density as a �pseudo� sca-
lar field. Our hk measures the spatial variation of h. In order
to avoid confusion, we shall refer to these spectra as scalar
spectra.

IV. RESULTS

The results reported below for the magnetic helicity den-
sity h refer to the advecto-resistive gauge and have been
obtained by the � method, unless indicated otherwise. The
results from the direct method agree �Sec. IV A�, but this
method develops an instability when nonlinear effects be-
come important �Sec. IV B�.
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A. Agreement between � and direct methods

To test the agreement between the � method and directly
solving the induction equation in the advecto-resistive gauge,
we plot the normalized rms magnetic helicity hrms

ar with re-
spect to time �Fig. 1�. Note that the nondimensional ratio
k1hrms

ar /Brms
2 has a well-defined plateau during the kinematic

stage. Below we shall study the average value of this plateau
as a function of magnetic Reynolds and Prandtl numbers. At
the end of the kinematic phase, there is a slow saturation
phase on a resistive time scale during which the large-scale
field of the dynamo develops.28 The results of the two calcu-
lations agree just until the moment when the direct calcula-
tion develops a numerical instability, whose nature will be
discussed in more detail below. The perfect agreement until
this moment can be taken as confirmation that the � method
works and is correctly implemented in the code.

B. Nature of the instability

In Fig. 2 we show time series for a range of modest
values of ReM and two resolutions, 323 and 643. Reducing
the magnetic Reynolds number may stabilize the system
somewhat, but changing the resolution has no clear effect. In
Fig. 3 we present data from equivalent runs that solve either
Eq. �14� or alternatively Eqs. �11� and �15�. We can see that
the solutions match up until time t=220 /cskf, where the run
that solves Eq. �14� becomes unstable.

The key point is that when we evolve Eqs. �11� and �15�,
� never enters the equations for physical quantities. How-
ever, when we evolve Eq. �14�, the magnetic field includes a
term �� ����, which, when computed numerically, is not
zero. The first panel in Fig. 3 shows the power spectra of the
vector potential. Comparing the advecto-resistive gauge
�dashed/red� with resistive gauge �dotted/blue� we see that

Aar=Ar+�� has significantly more power at high k than Ar.
Numerics cannot adequately handle the requirement that
����=0 at high k in the direct method, introducing errors
in B, as can be seen in the second panel. This fictitious
increase in magnetic power at high k �and the attendant in-
crease in current� result in a fictitious high k increase in the
velocity field �third panel� that produces the numerical insta-
bility. The results of Fig. 2 suggest that the power of �
�remembering that J includes that the third derivative of ��
drops slowly enough at high k that numerical stability can
only be achieved by enforcing an adequate resistivity � to
damp � for only modest wavenumbers. Indeed, any gauge
with large power in A for high k is expected to be numeri-
cally unstable, and the method sketched in Appendix A
orAppendix B may be used to make the connection between
analytical results in such a numerically unstable gauge and
numerical results produced in a stable gauge.

C. Evolution of rms helicity density

In Fig. 4 we present a time series of the normalized rms
magnetic helicity density in the kinematic regime �Lorentz
force turned off, i.e., cL=0�. In both the advecto-resistive and
resistive gauges, there is an initial adjustment of the nondi-
mensional ratio k1hrms /Brms

2 to a certain value, followed by a
plateau. In the kinematic regime the magnetic helicity
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FIG. 1. �Color online� Time dependence of the normalized helicity for the
advecto-resistive gauge with the direct method and the � method. Both
curves agree perfectly just until the moment when the code develops an
instability in the direct calculation. Time is normalized in terms of the mag-
netic diffusion time. The fit is an exponential relaxation to a constant value
proportional to 1−exp�−2�km

2 �t�, where �t= t− tsat is the time after the
small-scale magnetic field has saturated �Ref. 28� and km=1.4k1 has been
chosen for a good fit.

FIG. 2. �Color online� Evolution of Brms /Beq for small values of ReM be-
tween 4.3 �top� and 2.1 �bottom�, using 323 �solid lines� and 643 �dashed, red
lines�. In each case, time on the abscissa is normalized by the growth rate ,
whose value is given in each panel in units of the inverse turnover time,
�−1=urmskf. The ends of each line mark the point when the solution became
unstable.
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density is passive and the advection term in the advecto-
resistive gauge merely serves to turbulently diffuse any local
concentrations of har. Therefore there cannot be any sponta-
neous growth of har, except for effects from the resistive
terms in the early adjustment phase. Turbulent diffusion it-
self, on the other hand, cannot generate variance of har.

In Figs. 5 and 6 we plot the height of the rms-magnetic
helicity density plateau as a function of ReM for several val-
ues of the magnetic Prandtl number and constant forcing
amplitude. The differences between the evolution equations
for hr and har are contained entirely in the flux terms so the
volume integral of h is the same in the two gauges. Any
difference between the rms values of h therefore is due to
spatial fluctuations generated by the flux terms.

We fit the data points in Fig. 5 with functions of the form

k1har

Brms
2 = cReM

−a�1 + bReM
2a� . �24�

The fit results for the parameters are presented in Table I. Of
interest is c, which increases with PrM and scales approxi-
mately with PrM

1/2. A more general, although less accurate fit
is given by

k1har

Brms
2 	 3ReM

−1�1 + �ReM/PrM
1/3

50
2� �25�

see Fig. 7.
It is clear that high wavenumber fluid eddies �which are

damped for small Re, i.e., large PrM, contribute significantly
to hrms

ar for ReM �100, while from Fig. 6 we see that they do
not contribute to hrms

r . That these eddies could contribute in
the advecto-resistive gauge is to be expected as the advective

FIG. 3. �Color online� Power spectra of A, B, and U for two runs that are
identical except that the first run solves for Aar directly while the second
solves for Ar and �. In the top panel we plot the spectrum of A obtained
either via Aar=Ar+�� �dashed� or directly, Adir

ar �solid/red�, and compare
with Ar �thick gray/yellow�, showing that the vector potential in the advecto-
resistive gauge has much more power at high k. The inset shows the time
evolution of the normalized hrms shortly before the time of the numerical
instability. The dash-dotted line indicates the time for which the power
spectra is taken. In the second panel we present magnetic energy spectra
obtained in the direct gauge �solid/red�, with the � method �dashed/black� as
well as kAar �dotted/blue�, showing that there is significant power in the
irrotational part of A. We see that in the direct calculation of Aar the numer-
ics are unable to adequately handle the high wavenumber power of Aar with
consequences for the velocity seen in the last panel �solid/red line�. The
spectra of B and U agree for resistive and advecto-resistive gauges �thick
gray/yellow line underneath the dashed black line� because the evaluation of
the curl of a gradient has been avoided �last two panels�. The three spectra
are all taken for t=210 /csk1.
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FIG. 4. �Color online� Time dependence of the rms values for the helicity in
the advecto-resistive �solid/red� and resistive �dashed/blue� gauges with the
Lorentz force switched off, i.e., cL=0 in both cases.
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The curves represent fits according to Eq. �24�.
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nature of that gauge implies the existence of an efficient
turbulent cascade; the fact that they do contribute there and
that the �J�Aar and ��� ·Aar�B terms remain important im-
plies that resistive terms both become important at small
length scales and have nondissipative effects. This is ex-
plained by the fact that Aar develops a strong high-k tail; see
also Fig. 3. This is confirmed in Fig. 8, which shows that the
resistive magnetic helicity fluxes in the advecto-resistive
gauge are proportional to ReM. In this gauge the rms resistive
helicity fluxes are therefore independent of the actual value
of the resistivity, staying finite even in the high ReM limit.
This is quite different from the resistive magnetic helicity
fluxes in the resistive gauge, and the global magnetic helicity
dissipation �which is gauge-independent�: both terms are
only proportional to ReM

1/2 and, after multiplying with � these
terms tend to zero for ReM →�.

D. Comparison with passive scalar

In Fig. 9 we present scalar spectra of the magnetic he-
licity density for both the resistive and advecto-resistive
gauges and for the passive scalar concentration c, in the ki-
nematic �arbitrary units� and saturated regimes. The passive
scalar spectrum shows a peak at the forcing scale, kf /k1=3,
followed by an approximate k−5/3 subrange and an exponen-
tial diffusive subrange. As long as the magnetic energy den-
sity is still small compared with the kinetic energy density,
the field exhibits exponential growth and a Kazantsev k3/2

energy spectrum, which is well seen in simulations even at
magnetic Prandtl numbers of unity both with and without

kinetic helicity in the velocity field.35 This k3/2 spectrum is
also reflected in the scalar spectrum of har. The scalar spec-
trum of hr is somewhat steeper and closer to k2, indicating
that hr is dominated by white noise in space at large scales.

The saturated regime exhibits some interesting proper-
ties. The pronounced peak of the power of the passive scalar
at the driving scale is easily understood as being due to the
source of c. However, the magnetic helicity density in the
resistive gauge shows a significant peak there as well, while
it does not in the advecto-resistive gauge. This implies that
the velocity term in Eq. �18� generates significant spatial
variations in the magnetic helicity density—even in the ab-
sence of external modulations. As in dynamical � quenching,
h influences the � effect, this suggests a way to quantify the
appropriateness of different gauge choices: systems where
spatial and temporal fluctuations in � can be adequately con-
strained would allow one to determine whether spatial fluc-
tuations in h, as seen in Fig. 9, are fictitious as suggested by
the advecto-resistive gauge or not.

TABLE I. Fit parameters for Eq. �24� and Fig. 5.

PrM a b c Line type

1 0.7 3�10−3 1.2 Solid/blue

5 0.9 4�10−4 2.0 Dashed/green

10 1.0 5�10−5 3.5 Dotted/red
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FIG. 6. �Color online� ReM dependence of k1hrms
r /Brms

2 for the kinematic
phase. Values are averages over times where they reach a stationary state.
A �1/4 power law can be seen.

FIG. 7. �Color online� Dependence of k1hrms
ar /Brms

2 , scaled by PrM
1/3 on

ReM /PrM
1/3 for the kinematic phase and PrM =1 �filled circles�, 5 �open

circles�, and 10 �plus signs�. The solid line represents the fit of Eq. �25�.

FIG. 8. �Color online� ReM scaling of the rms value of J�A, normalized by
ReMBrms

2 , for the advecto-resistive and resistive gauges. The solid line rep-
resents constant scaling, i.e., �J�Aar	const, while the dashed line repre-
sents inverse square root scaling, i.e., �J�Ar�ReM

−1/2, for three runs with
PrM =1 in the saturated regime. The dotted/blue line shows that �J2, prop-
erly normalized, is approximately constant.
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The spectra of har in the saturated regime do not present
a clear inertial range, so we cannot draw strong conclusions
as to possible nondiffusive turbulent fluxes. However, hr fol-
lows the same cascade as the passive scalar. Previous studies
in that gauge1 found that magnetic helicity fluxes were best
treated as diffusive, although the fits were imperfect. The
diffusive nature is clearly seen in the spectrum while the
imperfections of the diffusive fit can be seen in the genera-
tion of a peak at the driving scale. This evidence in support
of diffusive magnetic helicity fluxes gives us the confidence
to predict at what ReM diffusive magnetic helicity fluxes will
play a dominant role in dynamo saturation, i.e., when the
diffusive fluxes have a greater effect on magnetic helicity
evolution than the resistive terms. This will be done in Sec.
V where we reanalyze simulation data from earlier work.34

V. REVISITING EARLIER WORK

Earlier work20,34 on magnetic helicity fluxes in inhomo-
geneous open systems confirmed that the magnetic helicity
density of the small-scale field is gauge-invariant —even if
that of the large-scale field is not. The divergence of the
mean magnetic helicity flux of the small-scale field is then
also gauge-invariant, but its value is small compared with
resistive magnetic helicity dissipation. We return to this work
to estimate at what ReM diffusive magnetic helicity fluxes
will begin to play a dominant role in dynamo saturation.

We emphasize that we are now discussing helicity prop-
erties of what we call the small-scale field. Such a field is

defined by introducing an averaged magnetic field, B̄, indi-
cated by an overbar. Following earlier work20,34 we restrict
ourselves here to planar �or horizontal� averaging. The small-

scale field is then given by b=B− B̄, and the mean magnetic
and current helicity densities of the fluctuating fields are then

h̄f �a ·b and j ·b, respectively, where ��a=b and j=��b.
Turbulent diffusion and the � effect imply helicity transfer
between scales36,37 through the mean electromotive force of

the fluctuating field, �̄=u�b, so that the evolution equation

for h̄f takes the form

� h̄f

�t
= − 2�̄ · B̄ − 2�j · b − � · F̄ f . �26�

Here, both h̄f and � · F̄ f are a gauge-dependent, but if there is

a steady state, and if h̄f is constant, then �h̄f /�t=0, and since

both �̄ · B̄ and j ·b are gauge-invariant, � · F̄ f must also be

gauge-invariant. Numerical values for �̄ · B̄, j ·b, and � · F̄ f

were given earlier34 for a particular simulation of a slab of
helically driven turbulence embedded in a poorly conducting
nonhelically driven turbulent halo. In Fig. 10 we show the

scaling of all three terms versus ReM. Note that −�̄ · B̄ is
balanced mainly by j ·b. However, if the current trend, j ·b
�ReM

−1 and � · F̄ f �ReM
−1/2 were to continue, one might ex-

pect a cross-over at ReM 	3�104. If so, the scaling of �̄ · B̄
is expected to become shallower, following that of � · F̄ f.
Given that the largest ReM accessible today is of order 103,
we may conclude that an alleviation of quenching through
diffusive magnetic helicity fluxes will not be prominent in
simulations for the near future. Nevertheless, astrophysical
systems such as the Sun are orders of magnitude beyond the
estimated critical point of ReM �3�104; and we expect their
dynamo dynamics to behave accordingly.

FIG. 9. �Color online� Power spectra of hr, har, and the passive scalar c, both
in the kinematic regime �top� and the nonlinear saturated regime �bottom�
for Re=80 with PrM =Sc=1. In the kinematic regime, the dash-dotted lines
have slopes +2 for hr, +3 /2 for har, �3/2 for c �top�, and �5/3 for c in the
saturated regime.

FIG. 10. �Color online� Scaling of �̄ · B̄, j ·b, and � · F̄ f vs ReM for the data
of an earlier simulation �Ref. 34� of helically driven turbulence embedded in
a poorly conducting nonhelically driven turbulent halo. The symbols show
actual data obtained from simulations, the dashed lines are the extrapolation
to high ReM.
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VI. CONCLUSIONS

In view of the fact that the time averaged magnetic he-
licity of the fluctuating fields is gauge-invariant in systems
with sufficient scale separation, the gauge-freedom can be
exploited to gain insights using gauges that are particularly
revealing. Here we have examined an interesting gauge: the
advecto-resistive gauge. As the advecto-resistive gauge is in-
herently numerically unstable, we had to implement a possi-
bly universal technique to run numerical simulations in such
unstable gauges by running in a stable gauge while also solv-
ing a further equation for the gauge transformation.

The advecto-resistive gauge has allowed us to examine
both the consequences of finite resistivity for magnetic he-
licity density as well as the possibilities of turbulent trans-
port. The magnetic helicity flux, and in particular the contri-
bution from �J�Aar �properly normalized� reaches a
constant value as �→0. This behavior is similar to the be-
havior of energy dissipation in turbulence, known as the law
of finite energy dissipation.38 This is interesting as the source
term for the volume integrated magnetic helicity H does in
fact tend to zero as � does. In this sense, the high ReM

behavior of magnetic helicity is richer than previously antici-
pated. Indeed, the generation of spatial magnetic helicity
fluctuations ex nihilo in nonadvecto-resistive gauges is inter-
esting, with potentially testable implications. We expect that
the magnetic helicity fluxes resulting from terms of the form
�J�Aar can be modeled as turbulent Fickian diffusion-type
fluxes down the gradient of mean magnetic helicity. How-
ever, it is clear that fluxes from turbulent diffusion provide
only a poor escape from catastrophic � quenching, partly
because they cannot distinguish between large- and small-
scale fields. Furthermore, in simulations with such turbulent
diffusion fluxes, their contribution is still much smaller than
the local resistive magnetic helicity dissipation.20,34 How-
ever, the latter decreases faster ��ReM

−1� with magnetic Rey-
nolds number than the former ��ReM

−1/2�, so one may esti-
mate that only for magnetic Reynolds numbers of around 104

one has a chance to see the effects of turbulent diffusion. If
true, however, such fluxes would definitely be important for
the magnetic Reynolds numbers relevant to stars and
galaxies—even though such values cannot be reached with
present day computer power.
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APPENDIX A: DERIVATION OF EQ. „5…

We begin by expressing U�B in terms of A

�U � B�i = UjAj,i − UjAi,j . �A1�

The last term can be subsumed into an advective derivative
term for A. Using furthermore UjAj,i= �UjAj�,i−Uj,iAj, we
can write Eq. �2� as

DAi
W

Dt
= − Uj,iAj

W + �U · AW�,i − �Ji. �A2�

We now insert Eq. �3� for AW=Aa−��W:a, so

DAi
a

Dt
−

D�,i
W:a

Dt
= − Uj,iAj

a + Uj,i�,j
W:a + �U · AW�,i − �Ji.

�A3�

and note that

−
D�,i

W:a

Dt
= − �i�D�W:a

Dt
 + Uj,i�,j

W:a. �A4�

The last term cancels and we are left with

DAi
a

Dt
+ Uj,iAj

a + �Ji = �i�D�W:a

Dt
+ U · AW , �A5�

so we recover the evolution equation for the advective gauge
provided Eq. �5� is obeyed.

APPENDIX B: DERIVATION OF EQ. „15…

We present here the derivation of the transformation
from the resistive gauge to the advecto-resistive gauge, pro-
ceeding analogously to the derivation presented in Appendix
A. However, instead of Eq. �A2� we now have

DAi
r

Dt
= − Uj,iAj

r + �U · Ar�,i + ��2Ai
r. �B1�

Inserting Eq. �13� for Ar=Aar−��r:ar, we obtain an Equation
similar to Eq. �A3�

DAi
ar

Dt
−

D�,i
r:ar

Dt

= − Uj,iAj
ar + Uj,i�,j

r:ar + �U · Ar�,i + ��2Ai
ar − ��2�,i

r:ar

�B2�

which leads to

DAi
ar

Dt
+ Uj,iAj

ar − ��2Ai
ar

= �i�D�i
r:ar

Dt
+ U · Ar − ��2�r:ar �B3�

so we recover the evolution equation for the advecto-
resistive gauge provided Eq. �15� is obeyed.
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The resistive decay of chains of three interlocked magnetic flux rings is considered. Depending on the
relative orientation of the magnetic field in the three rings, the late-time decay can be either fast or slow. Thus,
the qualitative degree of tangledness is less important than the actual value of the linking number or, equiva-
lently, the net magnetic helicity. Our results do not suggest that invariants of higher order than that of the
magnetic helicity need to be considered to characterize the decay of the field.

DOI: 10.1103/PhysRevE.81.036401 PACS number�s�: 52.65.Kj, 52.30.Cv, 52.35.Vd

I. INTRODUCTION

Magnetic helicity plays an important role in plasma phys-
ics �1–3�, solar physics �4–6�, cosmology �7–9�, and dynamo
theory �10,11�. This is connected with the fact that magnetic
helicity is a conserved quantity in ideal magnetohydrody-
namics �12�. The conservation law of magnetic helicity is
ultimately responsible for inverse cascade behavior that can
be relevant for spreading primordial magnetic field over
large length scales. It is also likely the reason why the mag-
netic fields of many astrophysical bodies have length scales
that are larger than those of the turbulent motions responsible
for driving these fields. In the presence of finite magnetic
diffusivity, the magnetic helicity can only change on a resis-
tive time scale. Of course, astrophysical bodies are open, so
magnetic helicity can change by magnetic helicity fluxes out
of or into the domain of interest. However, such cases will
not be considered in the present paper.

In a closed or periodic domain without external energy
supply, the decay of a magnetic field depends critically on
the value of the magnetic helicity. This is best seen by con-
sidering spectra of magnetic energy and magnetic helicity.
The magnetic energy spectrum M�k� is normalized such that

� M�k�dk = �B2�/2�0, �1�

where B is the magnetic field, �0 is the magnetic permeabil-
ity, and k is the wave number �ranging from 0 to ��. The
magnetic helicity spectrum H�k� is normalized such that

� H�k�dk = �A · B� , �2�

where A is the magnetic vector potential with B=��A. In a
closed or periodic domain, H�k� is gauge invariant, i.e., it
does not change after adding a gradient term to A. For finite
magnetic helicity, the magnetic energy spectrum is bound
from below �12� such that

M�k� � k�H�k��/2�0. �3�

This relation is also known as the realizability condition
�13�. Thus, the decay of a magnetic field is subject to a
corresponding decay of its associated magnetic helicity.
Given that in a closed or periodic domain the magnetic he-

licity changes only on resistive time scales �14�, the decay of
magnetic energy is slowed down correspondingly. More de-
tailed statements can be made about the decay of turbulent
magnetic fields, where the energy decays in a power-law
fashion proportional to t−�. In the absence of magnetic helic-
ity, �A ·B�=0, we have a relatively rapid decay with
�	1.3 �15�, while with �A ·B��0, the decay is slower with
� between 1/2 �9� and 2/3 �16�.

The fact that the decay is slowed down in the helical case
is easily explained in terms of the topological interpretation
of magnetic helicity. It is well known that the magnetic he-
licity can be expressed in terms of the linking number n of
discrete magnetic flux ropes via �13�

� A · BdV = 2n�1�2, �4�

where

�i = �
Si

B · dS �for i = 1 and 2� �5�

are the magnetic fluxes of the two ropes with cross-sectional
areas S1 and S2. The slowing down of the decay is then
plausibly explained by the fact that a decay of magnetic en-
ergy is connected with a decay of magnetic helicity via the
realizability condition �3�. Thus, a decay of magnetic helicity
can be achieved either by a decay of the magnetic flux or by
magnetic reconnection. Magnetic flux can decay through an-
nihilation with oppositely oriented flux. Reconnection on the
other hand reflects a change in the topological connectivity,
as demonstrated in detail in Ref. �17�, p. 28.

The situation becomes more interesting when we consider
a flux configuration that is interlocked, but with zero linking
number. This can be realized quite easily by considering a
configuration of two interlocked flux rings where a third flux
ring is connected with one of the other two rings such that
the total linking number becomes either 0 or 2, depending on
the relative orientation of the additional ring, as is illustrated
in Fig. 1. Topologically, the configuration with linking num-
bers of 0 and 2 are the same except that the orientation of the
field lines in the upper ring is reversed. Nevertheless, the
simple topological interpretation becomes problematic in the
case of zero linking number, because then also the magnetic
helicity is zero, so the bound of M from below disappears,
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and M can now in principle freely decay to zero. One might
expect that the topology should then still be preserved and
that the linking number as defined above, which is a qua-
dratic invariant, should be replaced with a higher-order in-
variant �18–20�. It is also possible that in a topologically
interlocked configuration with zero linking number the mag-
netic helicity spectrum H�k� is still finite and that bound �3�
may still be meaningful. In order to address these questions
we perform numerical simulations of the resistive magneto-
hydrodynamic equations using simple interlocked flux con-
figurations as initial conditions. We also perform a control
run with a noninterlocked configuration and zero helicity in
order to compare the magnetic energy decay with the inter-
locked case.

Magnetic helicity evolution is independent of the equation
of state and applies hence to both compressible and incom-
pressible cases. In agreement with earlier work �21� we as-
sume an isothermal gas, where pressure is proportional to
density and the sound speed is constant. However, in all
cases the bulk motions stay subsonic, so for all practical
purposes our calculations can be considered nearly incom-
pressible, which would be an alternative assumption that is
commonly made �22�.

II. MODEL

We perform simulations of the resistive magnetohydrody-
namic equations for a compressible isothermal gas where the
pressure is given by p=�cs

2, with � being the density and cs
being the isothermal sound speed. We solve the equations for
A, the velocity U, and the logarithmic density ln � in the
form

�A

�t
= U � B + ��2A , �6�

DU

Dt
= − cs

2 � ln � + J � B/� + Fvisc, �7�

D ln �

Dt
= − � · U , �8�

where Fvisc=�−1� ·2	�S is the viscous force; S is the trace-
less rate of strain tensor, with components Sij =

1
2 �Ui,j +Uj,i�

− 1
3
ij � ·U; J=��B /�0 is the current density; 	 is the ki-

nematic viscosity; and � is the magnetic diffusivity.
The initial magnetic field is given by a suitable arrange-

ment of magnetic flux ropes, as already illustrated in Fig. 1.
These ropes have a smooth Gaussian cross-sectional profile
that can easily be implemented in terms of the magnetic
vector potential. We use the PENCIL code �23�, where this
initial condition for A is already prepared, except that now
we adopt a configuration consisting of three interlocked flux
rings �Fig. 1� where the linking number can be chosen to be
either 0 or 2, depending only on the field orientation in the
last �or the first� of the three rings. Here, the two outer rings
have radii Ro, while the inner ring is slightly bigger and has
the radius Ri=1.2Ro, but with the same flux. We use Ro as
our unit of length. The sound travel time is given by Ts
=Ro /cs.

In the initial state we have U=0 and �=�0=1. Our initial
flux, �=
B ·dS, is the same for all tubes with
�=0.1csRo

2��0�0. This is small enough for compressibility
effects to be unimportant, so the subsequent time evolution is
not strongly affected by this choice. For this reason, the
Alfvén time, TA=��0�0Ro

3 /�, will be used as our time unit.
In all our cases we have TA=10Ts and denote the dimension-
less time as �= t /TA. In all cases we assume that the mag-
netic Prandtl number 	 /� is unity, and we choose 	=�
=10−4Rocs=10−3Ro

2 /TA. We use 2563 mesh points.
We have chosen a fully compressible code, because it is

readily available to us. Alternatively, as discussed at the end
of Sec. I, one could have chosen an incompressible code by
ignoring the continuity equation and computing the pressure
such that � ·U=0 at all times. Such an operation breaks the
locality of the physics and is computationally more intensive,
because it requires global communication.

III. RESULTS

Let us first discuss the visual appearance of the three in-
terlocked flux rings at different times. In Fig. 2 we compare
the three rings for the zero and finite magnetic helicity cases
at the initial time and at �=0.5. Note that each ring shrinks as
a result of the tension force. This effect is strongest in the
core of each ring, causing the rings to show a characteristic
indentation that was also seen in earlier inviscid and nonre-
sistive simulations of two interlocked flux rings �21�.

At early times, visualizations of the field show little dif-
ference, but at time �=0.5 some differences emerge in that
the configuration with zero linking number develops an outer
ring encompassing the two rings that are connected via the
inner ring; see Fig. 2. This outer ring is absent in the con-
figuration with finite linking number.

The change in topology becomes somewhat clearer if we
plot the magnetic-field lines �see Fig. 3�. For the n=2 con-
figuration, at time �=4 one can still see a structure of three
interlocked rings, while for the n=0 case no clear structure

(b)(a) (c)

FIG. 1. Visualization of the triple ring configuration at the initial
time. Arrows indicate the direction of the field lines in the rings,
corresponding to a configuration with n=0 �left� and n=2 �center�.
On the right the noninterlocked configuration with n=0 is shown.
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can be recognized. Note that the magnitude of the magnetic
field has diminished more strongly for n=0 than for n=2.
This is in accordance with our initial expectations.

The differences between the two configurations become
harder to interpret at later times. Therefore, we compare in

Fig. 4 cross sections of the magnetic field for the two cases.
The xy cross sections show clearly the development of the
new outer ring in the zero linking number configuration.
From this figure it is also evident that the zero linking num-
ber case suffers more rapid decay because of the now anti-
aligned magnetic fields �in the upper panel Bx is of opposite
sign about the plane y=0 while it is negative in the lower
panel�.

The evolution of magnetic energy is shown in Fig. 5 for
the cases with zero and finite linking numbers. Even at the
time �	0.6, when the rings have just come into mutual con-
tact, there is no clear difference in the decay for the two
cases. Indeed, until the time �	2 the magnetic energy
evolves still similarly in the two cases, but then there is a
pronounced difference where the energy in the zero linking
number case shows a rapid decline �approximately like t−3/2�,
while in the case with finite linking number it declines much
more slowly �approximately like t−1/3�. However, power-law
behavior is only expected under turbulent conditions and not
for the relatively structured field configurations considered
here. The energy decay in the zero linking number case is
roughly the same as in a case of three flux rings that are not
interlocked. The result of a corresponding control run is
shown as a dotted line in Fig. 5. At intermediate times, 0.5
���5, the magnetic energy of the control run has dimin-
ished somewhat faster than in the interlocked case with n
=0. It is possible that this is connected with the interlocked
nature of the flux rings in one of the cases. Alternatively, this
might reflect the presence of rather different dynamics in the
noninterlocked case, which seems to be strongly controlled
by oscillations on the Alfvén time scale. Nevertheless, at
later times the decay laws are roughly the same for noninter-
locked and interlocked nonhelical cases.

The time when the rings come into mutual contact is
marked by a maximum in the kinetic energy at �	0.6. This
can be seen from Fig. 6, where we compare kinetic and mag-
netic energies separately for the cases with finite and zero
linking numbers. Note also that in the zero linking number
case magnetic and kinetic energies are nearly equal and de-
cay in the same fashion.

Next we consider the evolution of magnetic helicity in
Fig. 7. Until the time �	0.6 the value of the magnetic he-
licity has hardly changed at all. After that time there is a
gradual decline, but it is slower than the decline of magnetic
energy. Indeed, the ratio �A ·B� / �B2�, which corresponds to a
length scale, shows a gradual increase from 0.1Ro to nearly
0.6Ro at the end of the simulation. This reflects the fact that
the field has become smoother and more space filling with
time.

Given that the magnetic helicity decays only rather
slowly, one must expect that the fluxes �i of the three rings
also only change very little. Except for simple configurations
where flux tubes are embedded in field-free regions, it is in
general difficult to measure the actual fluxes, as defined in
Eq. �5�. On the other hand, especially in observational solar
physics, one often uses the so-called unsigned flux �24,25�,
which is defined as

(b)(a) (c)

FIG. 2. �Color online� Visualization of the triple ring configura-
tion at �=0 �left�, as well as at �=0.5 with zero linking number
�center� and finite linking number �right�. The three images are in
the same scale. The change in the direction of the field in the upper
ring gives rise to a corresponding change in the value of the mag-
netic helicity. In the center we can see the emergence of a new flux
ring encompassing the two outer rings. Such a ring is not seen on
the right.

(a)

(b)

FIG. 3. �Color online� Magnetic flux tubes at time �=4 for the
case of zero linking number �upper picture� and finite linking num-
ber �lower picture�. The colors represent the magnitude of the mag-
netic field, where the scale goes from red �lowest� over green to
blue �highest�.
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P2D = �
S

�B�dS . �9�

For a ring of flux � that intersects the surface in the middle
at right angles the net flux cancels to zero, but the
unsigned flux gets contributions from both intersections, so
P2D=2���. In three-dimensional simulations it is convenient
to determine

FIG. 4. �Color online� Cross sections in the xy plane of the magnetic field with zero linking number �upper row� and finite linking number
�lower row�. The z component �pointing out of the plane� is shown together with vectors of the field in the plane. Light �yellow� shades
indicate positive values and dark �blue� shades indicate negative values. Intermediate �red� shades indicate zero value.

FIG. 5. Decay of magnetic energy �normalized to the initial
value� for linking numbers of 2 �solid line� and 0 �dashed line�. The
dotted line gives the decay for a control run with noninterlocked
rings. The dashed-dotted lines indicate t1/3 and t3/2 scalings for
comparison. The inset shows the evolution of the maximum field
strength in units of the thermal equipartition value,
Bth=cs��0�0�1/2.

FIG. 6. Comparison of the evolution of kinetic and magnetic
energies in the cases with finite and with vanishing linking num-
bers. Note that in both cases the maximum kinetic energy is reached
at the time �	0.6. The two cases begin to depart from each other
after �	2. In the nonhelical case the magnetic energy shows a
sharp drop and reaches equipartition with the kinetic energy, while
in the helical case the magnetic energy stays always above the
equipartition value.
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P = �
V

�B�dV . �10�

For several rings, all with radius R, we have

P = 2R�
i=1

N

��i� = NRP2D, �11�

where N is the number of rings. In Fig. 8 we compare the
evolution of P �normalized to the initial value P0� for the
cases with n=0 and 2. It turns out that after �=1 the value of
p is nearly constant for n=2, but not for n=0.

Let us now return to the earlier question of whether a flux
configuration with zero linking number can have finite spec-
tral magnetic helicity, i.e., whether H�k� is finite but of op-
posite sign at different values of k. The spectra M�k� and
H�k� are shown in Fig. 9 for the two cases at time �=5. This
figure shows that in the configuration with zero linking num-
ber H�k� is essentially zero for all values of k. This is not the
case and, in hindsight, is hardly expected; see Fig. 9 for the
spectra of M�k� and k�H�k�� /2�0 in the two cases at �=5.
What might have been expected is a segregation of helicity
not in the wave-number space, but in the physical space for
positive and negative values of y. It is then possible that
magnetic helicity has been destroyed by locally generated

magnetic helicity fluxes between the two domains in y�0
and y�0. However, this is not pursued further in this paper.

In order to understand in more detail the way the energy is
dissipated, we plot in Fig. 10 the evolution of the time de-
rivative of the magnetic energy EM= �1 /2�0�
B2dV �upper
panel� and the kinetic energy EK= 1

2
�U2dV �lower panel�. In
the lower panel we also show the rate of work done by the
Lorentz force, WL=
U · �J�B�dV, and in the upper panel we
show the rate of work done against the Lorentz force, −WL.

FIG. 7. Evolution of magnetic helicity in the case with finite
linking number. In the upper panel, �A ·B� is normalized to its initial
value �indicated by subscript 0� while in the lower panel it is nor-
malized to the magnetic energy divided by Ro.

FIG. 8. Decay of the unsigned magnetic flux P �normalized to
the initial value P0� for the cases with n=0 and 2. The dotted line
gives the decay for a control run with noninterlocked rings.

FIG. 9. Comparison of spectra of magnetic energy and magnetic
helicity in the case with zero linking number �upper panel� and
finite linking number �lower panel� at �=5. Stretches with negative
values of H�k� are shown as dotted lines.

FIG. 10. Evolution of the rate of work done against the Lorentz
force, −WL, together with dEM /dt �upper panel�, as well as the rate
of work done by the Lorentz force, +WL, together with dEK /dt
�lower panel�, all normalized in units of EM /Ts, for the case with
finite linking number. The inset shows −WL at late times for the
case with n=0 �solid line� and n=2 �dashed line�.
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All values are normalized by EM0 /Ts, where EM0 is the value
of EM at �=0.

The rates of magnetic and kinetic energy dissipations, �M
and �K, respectively, can be read off as the difference be-
tween the two curves in each of the two panels in Fig. 10.
Indeed, we have

− WL − dEM/dt = �M, �12�

WL + WC − dEK/dt = �K, �13�

where the compressional work term WC=
p� ·UdV is found
to be negligible in all cases. Looking at Fig. 10 we can say
that at early times �0���0.7� the magnetic field contributes
to driving fluid motions �WL�0� while at later times some
of the magnetic energy is replenished by kinetic energy
�WL�0�, but since magnetic energy dissipation still domi-
nates, the magnetic energy is still decaying �dEM /dt�0�.
The maximum dissipation occurs around the time �=0.7. The
magnetic energy dissipation is then about twice as large as
the kinetic energy dissipation. We note that the ratio between
magnetic and kinetic energy dissipations should also depend
on the value of the magnetic Prandtl number PrM=	 /�,
which we have chosen here to be unity. In this connection it
may be interesting to recall that one finds similar ratios of �K
and �M both for helical and nonhelical turbulence �26�. At
smaller values of PrM the ratio of �K to �K+�M diminishes
like PrM

−1/2 for helical turbulence �27�. In the present case the
difference between n=0 and 2 is, again, small. Only at later
times there is a small difference in WL, as is shown in the
inset of Fig. 10. It turns out that, for n=2, WL is positive
while for n=0 its value fluctuates around zero. This suggests
that the n=2 configuration is able to sustain fluid motions for
longer times than the n=0 configuration. This is perhaps
somewhat unexpected, because the helical configuration
�n=2� should be more nearly force free than the nonhelical
configuration. However, this apparent puzzle is simply ex-
plained by the fact that the n=2 configuration has not yet
decayed as much as the n=0 configuration has.

IV. CONCLUSIONS

The present work has shown that the rate of magnetic
energy dissipation is strongly constrained by the presence of
magnetic helicity and not by the qualitative degree of knot-
tedness. In our example of three interlocked flux rings we
considered two flux chains, where the topology is the same
except that the relative orientation of the magnetic field is
reversed in one case. This means that the linking number
switches from 2 to 0, just depending on the sign of the field
in one of the rings. The resulting decay rates are dramatically
different in the two cases, and the decay is strongly con-
strained in the case with finite magnetic helicity.

The present investigations reinforce the importance of
considering magnetic helicity in studies of reconnection. Re-
connection is a subject that was originally considered in two-
dimensional studies of X-point reconnection �28,29�. Three-
dimensional reconnection was mainly considered in the last
20 years. An important aspect is the production of current
sheets in the course of field line braiding �30�. Such current
sheets are an important contributor to coronal heating �31�.
The crucial role of magnetic helicity has also been recog-
nized in several papers �32,33�. However, it remained un-
clear whether the decay of interlocked flux configurations
with zero helicity might be affected by the degree of tangled-
ness. Our present work suggests that a significant amount of
dissipation should only be expected from tangled magnetic
fields that have zero or small magnetic helicity, while tangled
regions with finite magnetic helicity should survive longer
and are expected to dissipate less efficiently.
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We present calculations of the relaxation of magnetic field structures that have the shape of particular knots
and links. A set of helical magnetic flux configurations is considered, which we call n-foil knots of which
the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean
rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for
Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated
and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier
nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring.
For the n-foil knots the decay is described by power laws that range form t−2/3 to t−1/3, which can be as
slow as the t−1/3 behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical
configurations decay like t−1, which is somewhat slower than the previously obtained t−3/2 behavior in the decay
of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures
that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by
the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight
imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher
order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the
two more complicated nonhelical structures mentioned above.
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I. INTRODUCTION

Magnetic helicity is an important quantity in dynamo
theory [1,2], astrophysics [3,4] and plasma physics [5–8].
In the limit of high magnetic Reynolds numbers it is a
conserved quantity [9]. This conservation is responsible for
an inverse cascade which can be the cause for large-scale
magnetic fields as we observe them in astrophysical objects.
The small-scale component of magnetic helicity is responsible
for the quenching of dynamo action [10] and has to be shed
in order to obtain magnetic fields of equipartition strength and
sizes larger then the underlying turbulent eddies [11].

Helical magnetic fields are observed on the Sun’s surface
[12,13]. Such fields are also produced in tokamak experiments
for nuclear fusion to contain the plasma [14]. It could be
shown that the helical structures on the Sun’s surface are more
likely to erupt in coronal mass ejections [15], which could
imply that the Sun sheds magnetic helicity [16]. In [17] it was
shown that, for a force-free magnetic field configuration, there
exists an upper limit of the magnetic helicity below which the
system is in equilibrium. Exceeding this limit leads to coronal
mass ejections which drag magnetic helicity from the Sun.

Magnetic helicity is connected with the linking of magnetic
field lines. For two separate magnetic flux rings with magnetic
flux φ1 and φ2 it can be shown that magnetic helicity is equal
to twice the number of mutual linking n times the product of
the two fluxes [18]:

HM =
∫

V

A · BdV = 2nφ1φ2, (1)

where B is the magnetic flux density, expressed in terms of the
magnetic vector potential A via B = ∇ × A and the integral is
taken over the whole volume. As we emphasize in this paper,
however, that this formula does not apply to the case of a single
interlocked flux tube.

The presence of magnetic helicity constrains the decay of
magnetic energy [5,9] due to the the realizability condition [19]
which imposes a lower bound on the spectral magnetic energy
if magnetic helicity is finite; that is,

M(k) � k|H (k)|/(2μ0), (2)

where M(k) and H (k) are magnetic energy and helicity at
wave number k and μ0 is the vacuum permeability. These
spectra are normalized such that

∫
M(k)dk = 〈B2〉/(2μ0) and∫

H (k)dk = 〈A · B〉, where angular brackets denote volume
averages. Note that the energy at each scale is bound separately,
which constrains conversions from large to small scales and
vice versa. For most of our calculations we assume a periodic
domain with zero net flux. Otherwise, in the presence of a net
flux, magnetic helicity would not be conserved [20,21], but it
would be produced at a constant rate by the α effect [22].

The connection with the topology of the magnetic field
makes the magnetic helicity a particularly interesting quantity
for studying relaxation processes. One could imagine that
the topological structure imposes limits on how magnetic
field lines can evolve during magnetic relaxation. To test
this it has been studied whether the field topology alone can
have an effect on the decay process or if the presence of
magnetic helicity is needed [23]. The outcome was that, even
for topologically nontrivial configurations, the decay is only
effected by the magnetic helicity content. This was, however,
questioned [24] and a topological invariant was introduced
via field line mapping which adds another constraint even in
absence of magnetic helicity. Further evidence for the impor-
tance of extra constraints came from numerical simulations
of braided magnetic field with zero magnetic helicity [25]
where, at the end of a complex cascade-like process, the system
relaxed into an approximately force-free field state consisting
of two flux tubes of oppositely signed twist. Since the net

016406-11539-3755/2011/84(1)/016406(10) ©2011 American Physical Society
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FIG. 1. (Color online) Braid representation of the 4-foil knot.
The letters denote the starting position and the numbers denote the
crossings.

magnetic helicity is zero, the evolution of the field would not
be governed by Taylor relaxation [5] but by extra constraints.

A serious shortcoming of some of the earlier work is that
the nonhelical field configurations considered so far were still
too simple. For example, in the triple ring of [23] it would have
been possible to rearrange freely one of the outer rings on top of
the other one without crossing any other field lines. The mag-
netic flux of these rings would annihilate to zero, making this
configuration trivially nonhelical. Therefore, we construct in
the present paper more complex nonhelical magnetic field con-
figurations and study the decay of the magnetic field in a similar
fashion as in our earlier work. Candidates for suitable field
configurations are the IUCAA logo1 (which is a single nonheli-
cally interlocked flux rope that will be referred to below as the
IUCAA knot) and the Borromean rings for which HM = 0. The
IUCAA knot is commonly named 818 in knot theory. Further-
more, we test if Eq. (1) is applicable for configurations where
there are no separated flux tubes while magnetic helicity is
finite. Therefore we investigate setups where the magnetic field
has the shape of a particular knot which we call n-foil knot.

II. MODEL

A. Representation of n-foil knots

In topology a knot or link can be described via the braid
notation [26], where the crossings are plotted sequentially,
which results in a diagram that resembles a braid. Some
convenient starting points have to be chosen from where the
lines are drawn in the direction according to the sense of the
knot (Figs. 1 and 2).

For each crossing either a capital or small letter is assigned
depending on whether it is a positive or negative crossing.

For the trefoil knot the braid representation is simply AAA.
For each new foil a new starting point is needed; at the same
time the number of crossings for each line increases by one.
This means that, for the 4-foil knot, the braid representation is
ABABABAB, for the 5-foil ABCABCABCABCABC, etc.

We construct an initial magnetic field configuration in the
form of an n-foil knot with nf foils or leaves. First, we
construct its spine or backbone as a parametrized curve in
three-dimensional space. In analogy to [27] we apply the
convenient parametrization

x(s) =

⎛
⎜⎝

(C + sin snf) sin[s(nf − 1)]

(C + sin snf) cos[s(nf − 1)]

D cos snf

⎞
⎟⎠ , (3)

1The Inter-University Centre for Astronomy and Astrophysics in
Pune, India.

FIG. 2. (Color online) xy projection of the 4-foil knot. The
numbers denote the crossings while the colors (line styles) separate
different parts of the curve. The letters denote the different starting
positions for the braid representation in Fig. 1. The arrow shows the
sense of the knot.

where (C − 1) is some minimum distance from the origin, D

is a stretch factor in the z direction and s is the curve parameter
(see Fig. 3).

The strength of the magnetic field across the tube’s cross
section is constant and equal to B0. In the following we shall
use B0 as the unit of the magnetic field. Since we do not
want the knot to touch itself we set C = 1.6 and D = 2. The
full three-dimensional magnetic field is constructed radially
around this curve (Fig. 4), where the thickness of the cross
section is set to 0.48.

B. The IUCAA knot

A prominent example of a single nonhelically interlocked
flux rope is the IUCAA knot. For the IUCAA knot we apply

FIG. 3. (Color online) Projection of the 5-foil on the xy plane.
The lines show the meaning of the distance C, which has to be larger
than 1 to make sense.
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FIG. 4. (Color online) Isosurface of the initial magnetic field
energy for the 4-foil configuration.

a very similar parametrization as for the n-foil knots. We have
to consider the faster variation in z direction, which yields

x(s) =

⎛
⎜⎝

(C + sin 4s) sin 3s

(C + sin 4s) cos 3s

D cos (8s − ϕ)

⎞
⎟⎠ , (4)

where C and D have the same meaning as for the n-foil
knots and ϕ is a phase shift of the z variation. The full three-
dimensional magnetic field is constructed radially around this
curve (Fig. 5), where the thickness of the cross section is set
to 0.48.

C. Borromean rings

The Borromean rings are constructed with three ellipses
whose surface normals point in the direction of the unit vectors
(Fig. 6).

The major and minor axes are set to 2.5 and 1, respectively,
and the thickness of the cross section is set to 0.6. If any
one of the three rings were removed, the remaining 2 rings
would no longer be interlocked. This means that there is no
mutual linking and hence no magnetic helicity. One should,
however, not consider this configuration as topologically
trivial, since the rings cannot be separated, which is reflected
in a nonvanishing third-order topological invariant [28].

D. Numerical setup

We solve the resistive magnetohydrodynamical (MHD)
equations for an isothermal compressible gas, where the gas
pressure is given by p = ρc2

S , with the density ρ and isothermal

FIG. 5. (Color online) Isosurface of the initial magnetic field
energy for the IUCAA knot seen from the top (left panel) and slightly
from the side (right panel).

FIG. 6. (Color online) Isosurface of the initial magnetic field
energy for the Borromean rings configuration.

sound speed cS . Instead of solving for the magnetic field B
we solve for its vector potential A and choose the resistive
gauge, since it is numerically well behaved [29]. The equations
we solve are

∂ A
∂t

= U × B + η∇2 A, (5)

DU
Dt

= −c2
S∇ ln ρ + J × B/ρ + Fvisc, (6)

D ln ρ

Dt
= −∇ · U, (7)

where U is the velocity field, η is the magnetic diffusivity,
J = ∇ × B/μ0 is the current density, Fvisc = ρ−1∇ · 2νρS is
the viscous force with the traceless rate of strain tensor S with
components Sij = 1

2 (ui,j + uj,i) − 1
3δij∇ · U , ν is the kine-

matic viscosity, and D/Dt = ∂/∂t + U · ∇ is the advective
time derivative. We perform simulations in a box of size (2π )3

with fully periodic boundary conditions for all quantities.
To test how boundary effects play a role we also perform
simulations with perfect conductor boundary conditions (i.e.,
the component of the magnetic field perpendicular to the
surface vanishes). In both choices of boundary conditions,
magnetic helicity is gauge invariant and is a conserved quantity
in ideal MHD (i.e., η = 0). As a convenient parameter we
use the Lundquist number Lu = UAL/η, where UA is the
Alfvén velocity and L is a typical length scale of the system.
The value of the viscosity is characterized by the magnetic
Prandtl number PrM = ν/η. However, in all cases discussed
below we use PrM = 1. To facilitate comparison of different
setups it is convenient to normalize time by the resistive time
tres = r2π/η, where r is the radius of the cross section of the
flux tube.

We solve Eqs. (5)–(7) with the PENCIL CODE [30,31],
which employs sixth-order finite differences in space and a
third-order time stepping scheme. As in our earlier work [23],
we use 2563 meshpoints for all our calculations. We recall
that we use explicit viscosity and magnetic diffusivity. Their
values are dominant over numerical contributions associated
with discretization errors of the scheme.2

2The discretization error of the temporal scheme scheme implies
a small diffusive contribution proportional to ∇4, but even at the
Nyquist frequency this is subdominant.
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III. RESULTS

A. Helicity of n-foil knots

We test equation (1) for the n-foil knots in order to see how
the number of foils nf relates to the number of mutual linking
n for the separated flux tubes. From our simulations we know
the magnetic helicity HM and the magnetic flux φ through the
tube. Solving (1) for n will lead to an apparent self-linking
number which we call napp. It turns out that napp is much larger
then nf and increases faster (Fig. 7).

We note that (1) does not apply to this setup of flux tubes
and propose therefore a different formula for the magnetic
helicity:

HM = (nf − 2)nfφ
2/2. (8)

In Fig. 7 we plot the apparent linking number together with a
fit which uses Eq. (8).

Equation (8) can be motivated via the number of crossings.
The flux tube is projected onto the xy plane such that the
number of crossings is minimal. The linking number can be
determined by adding all positive crossings and subtracting all
negative crossings according to Fig. 8.

The linking number is then simply given as [32]

nlinking = (n+ − n−)/2, (9)

FIG. 7. (Color online) The apparent self-linking number for
n-foil knots with respect to nf (upper panel). The fit is obtained
by equating (1) and (8). The length of a n-foil knot is plotted with
respect to nf (lower panel), which can be fit almost perfectly by a
linear function.

++ − −

FIG. 8. (Color online) Schematic representation illustrating the
sign of a crossing. Each crossing has a handedness which can be either
positive or negative. The sum of the crossings gives the number of
linking and eventually the magnetic helicity content via equation (8).

where n+ and n− correspond to positive and negative cross-
ings, respectively. If we set nlinking = napp then we easily see
the validation of (8). Each new foil creates a new ring of
crossings and adds up one crossing in each ring (see Fig. 9),
which explains the quadratic increase.

B. Magnetic energy decay for n-foil knots

Next, we plot in Fig. 10 the magnetic energy decay for
n-foil knots with nf = 3 up to nf = 7 for periodic boundary
conditions. It turns out that, at later times, the decay slows
down as nf increases. The decay of the magnetic energy obeys
an approximate t−2/3 law for nf = 3 and a t−1/3 law for nf = 7.
The rather slow decay is surprising in view of earlier results
that, for turbulent magnetic fields, the magnetic energy decays
like t−1 in the absence of magnetic helicity and like t−1/2

with magnetic helicity [33]. Whether or not the decay seen in
Fig. 10 really does follow a power law with such an exponent
remains therefore open.

The different power laws for a given number of foils nf are
unexpected because the setups differ only in their magnetic
helicity and magnetic energy content and not in the qualitative
nature of the knot. Indeed, one might have speculated that the
faster t−2/3 decay applies to the case with larger nf , because
this structure is more complex and involves sharper gradients.
On the other hand, a larger value of nf increases the total
helicity, making the resulting knot more strongly packed. This
can be verified by noting that the magnetic helicity increases
quadratically with nf while the magnetic energy increases
only linearly. This is because the energy is proportional to
the length of the tube which, in turn, is proportional to nf

FIG. 9. (Color online) The isosurface for the 4-foil knot field
configuration. The sign of the crossing is always negative. The rings
show the different areas where crossings occur.

016406-4



DECAY OF HELICAL AND NONHELICAL MAGNETIC KNOTS PHYSICAL REVIEW E 84, 016406 (2011)

FIG. 10. (Color online) Time dependence of the normalized
magnetic energy for a given number of foils with periodic boundary
conditions. The power law for the energy decay varies between −2/3
for nf = 3 [solid (blue) line] and −1/3 for nf = 7 [solid (black)].

(Fig. 7). Therefore we expect that, for the higher nf cases, the
realizability condition should play a more significant role at
early times. This can be seen in Fig. 11, where we plot the
ratio 2M(k)/[k|H (k)|] for nf = 3 to nf = 7 for k = 2. Since
the magnetic helicity relative to the magnetic energy is higher
for larger values of nf , it plays a more significant role for high
nf . This would explain a different onset of the power law decay,
although it would not explain a change in the exponent. Indeed
the decay of HM shows approximately the same behavior for
all nf (Fig. 12). We must therefore expect that the different
decay laws are described only approximately by power laws.

For periodic boundary conditions it is possible that the
flux tube reconnects over the domain boundaries which could
lead to additional magnetic field destruction. To exclude
such complications we compare simulations with perfectly
conducting or closed boundaries with periodic boundary

FIG. 11. (Color online) Time dependence of the quotient from
the realizability condition (2) for k = 2. It is clear that, for larger nf ,
the energy approaches its minimum faster.

FIG. 12. (Color online) Time dependence of the normalized
magnetic helicity for a given number of foils with periodic boundary
conditions.

conditions (Fig. 13). Since there is no difference in the two
cases we can exclude the significance of boundary effects for
the magnetic energy decay.

In all cases the magnetic helicity can only decay on a
resistive time scale (Fig. 12). This means that, during faster
dynamical processes like magnetic reconnection, magnetic
helicity is approximately conserved. To show this we plot
the magnetic field lines for the trefoil knot at different
times (Fig. 14). Since magnetic helicity does not change
significantly, the self-linking is transformed into a twisting of
the flux tube which is topologically equivalent to linking. Such
a process has also been mentioned in connection with Fig. 1 of
Ref. [34], while the opposite process of the conversion of twist
into linkage has been seen in Ref. [35]. We can also see that the
reconnection process, which transforms the trefoil knot into a
twisted ring, does not aid the decay of magnetic helicity.

FIG. 13. (Color online) Time dependence of the normalized
magnetic energy for the trefoil and 4-foil knot with periodic and
perfect conductor (PC) boundary conditions. There is no significant
difference in the energy decay for the different boundary conditions.
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FIG. 14. (Color online) Magnetic field lines for the trefoil knot
at time t = 0 (upper panel) and t = 7.76 × 10−2tres (lower panel).
Both images were taken from the same viewing position to make
comparisons easier. The Lundquist number was chosen to be 1000.
The colors indicate the field strength.

C. Decay of the IUCAA knot

For the nonhelical triple-ring configuration of Ref. [23] it
was found that the topological structure gets destroyed after
only 10 Alfvén times. The destruction was attributed to the
absence of magnetic helicity whose conservation would pose
constraints on the relaxation process. Looking at the magnetic
field lines of the IUCAA knot at different times (Fig. 15), we
see that the field remains structured and that some helical
features emerge above and below the z = 0 plane. These
localized helical patches could then locally impose constraints
on the magnetic field decay.

The asymmetry of the IUCAA knot in the z direction leads
to different signs of magnetic helicity above and below the
z = 0 plane. This is shown in Figs. 16 and 17 where we plot
the magnetic helicity for the upper and lower parts for two
different values of ϕ; see Eq. (4). In the plot, we refer to the
upper and lower parts as north and south, respectively. These
plots show that there is a tendency of magnetic helicity of
opposite sign to emerge above and below the z = 0 plane.
Given that the magnetic helicity was initially zero, one may
speculate that higher order topological invariants could provide

FIG. 15. (Color online) Magnetic field lines for the IUCAA knot
at t = 0.108tres (upper panel) and at t = 0.216tres (lower panel) for
Lu = 1000 and ϕ = (4/3)π .

an appropriate tool to characterize the emergence of such a
“bihelical” structure from an initially nonhelical one.

Note that there is a net increase of magnetic helicity over
the full volume. Furthermore, the initial magnetic helicity is
not exactly zero either, but this is probably a consequence
of discretization errors associated with the initialization. The
subsequent increase of magnetic helicity can only occur on
the longer resistive time scales, since magnetic helicity is
conserved on dynamical time scales. Note, however, that the
increase of magnetic helicity is exaggerated because we divide
by the mean magnetic energy density which is decreasing with
time.

In Fig. 18 we plot the xy-averaged magnetic helicity as a
function of z and t . This shows that the asymmetry between
upper and lower parts increases with time, which we attribute
to the Lorentz forces through which the knot shrinks and
compresses its interior. This is followed by the ejection of
magnetic field.
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FIG. 16. (Color online) Normalized magnetic helicity in the
northern [green (dashed) line] and southern [red (dotted) line] domain
half together with the total magnetic helicity [blue (solid) line] for
the IUCAA knot with Lu = 2000 and ϕ = (4/3)π .

To clarify this we plot slices of the magnetic energy density
in the xz plane for different times (Fig. 19). The slices are set
in the center of the domain.

Due to the rose-like shape, our representation of the IUCAA
knot is not quite symmetric and turns out to be narrower in
the lower half (negative z) than in the upper half (positive z),
which is shown in Fig. 5 (right panel). When the knot contracts
due to the Lorentz force, it begins to touch the inner parts,
which creates motions in the positive z direction which, in turn,
drag the magnetic field away from the center (Fig. 19). The
pushing of material can, however, be decreased when the phase
ϕ is changed. For ϕ = (4/3 + 0.2)π there is no such upward
motion visible and the configuration stays nearly symmetric
(Fig. 20).

In Fig. 21 the decay behavior of the magnetic energy is
compared with previous work [23]. We note in passing that

FIG. 17. (Color online) Normalized magnetic helicity in the
northern [green (dashed) line] and southern [red (dotted) line] domain
half together with the total magnetic helicity [blue (solid) line] for
the IUCAA knot with Lu = 2000 and ϕ = (4/3 + 0.2)π .

FIG. 18. (Color online) xy-averaged magnetic helicity density
profile in z direction for the IUCAA knot with Lu = 2000 and
ϕ = (4/3)π . There is an apparent asymmetry in the distribution
amongst the hemispheres.

the power law of t−1 is expected for nonhelical turbulence
[33], but it is different from the helical (t−1/2) and nonhelical
(t−3/2) triple-ring configurations studied earlier. A possible
explanation is the conservation of magnetic structures for the
IUCAA knot, whereas the nonhelical triple-ring configuration
loses its structure.

D. Borromean rings

Previous calculations showed a significant difference in the
decay process of three interlocked flux rings in the helical and
nonhelical case [23]. In Fig. 21 we compare the magnetic en-
ergy decay found from previous calculations using triple-ring
configurations with the IUCAA knot and the Borromean rings.

The Borromean rings show a similar behavior as the
IUCAA knot where the magnetic energy decays like t−1.
Similarly to the IUCAA knot we expect some structure, which
is conserved during the relaxation process and causes the
relatively slow energy decay compared to other nonhelical
configurations. We plot the magnetic field lines at times t =
0.248tres and t = 0.276tres; see Figs. 22 and 23, respectively. At
t = 0.248tres there are two interlocked flux rings in the lower
left corner, while in the opposite half of the simulation domain
a clearly twisted flux ring becomes visible. The interlocked
rings reconnect at t = 0.276tres and merge into one flux tube
with a twist opposite to the other flux ring. The magnetic
helicity stays zero during the reconnection, but changes locally,
which then imposes a constraint on the magnetic energy decay
and could explain the power law that we see in Fig. 21. This
finding is similar to that of Ruzmaikin and Akhmetiev [28]
who propose that, after reconnection, the Borromean ring
configuration transforms first into a trefoil knot and three
8-form flux tubes and after subsequent reconnection into two
untwisted flux rings (so-called unknots) and six 8-form flux
tubes. We can partly reproduce this behavior, but instead of a
trefoil knot we obtain two interlocked flux rings and, instead of
the 8-form flux tubes, we obtain internal twist in the flux rings.
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FIG. 19. (Color online) Magnetic energy density in the xz plane
for y = 0 at t = 0 (upper panel) and t = 5.58 × 10−2tres (lower panel)
for the IUCAA knot with Lu = 2000 and ϕ = (4/3)π .

IV. CONCLUSIONS

In this paper we have analyzed for the first time the decay of
complex helical and nonhelical magnetic flux configurations.
A particularly remarkable one is the IUCAA knot for which
the linking number is zero, and nevertheless, some finite
magnetic helicity is gradually emerging from the system on a
resistive time scale. It turns out that both the IUCAA knot and
the Borromean rings develop regions of opposite magnetic
helicity above and below the midplane, so the net magnetic
helicity remains approximately zero. In that process, any slight
imbalance can then lead to the amplification of the ratio
of magnetic helicity to magnetic energy—even though the
magnetic field on the whole is decaying. This clearly illustrates
the potential of nonhelical configurations to exhibit nontrivial
behavior, and thus the need for studying the evolution of higher
order invariants that might capture such processes.

The role of resistivity in producing magnetic helicity from
a nonhelical initial state has recently been emphasized [36],

FIG. 20. (Color online) Magnetic energy density in the xz plane
for y = 0 at t = 0 (upper panel) and t = 5.58 × 10−2tres (lower panel)
for the IUCAA knot with Lu = 2000 and ϕ = (4/3 + 0.2)π . The
magnetic field stays centered.

but it remained puzzling how a resistive decay can increase
the topological complexity of the field, as measured by the
magnetic helicity. Our results now shed some light on this.
Indeed, the initial field in our examples has topological
complexity that is not captured by the magnetic helicity as
a quadratic invariant. This is because of mutual cancellations
that can gradually undo themselves during the resistive decay
process, leading thus to finite magnetic helicity of opposite
sign in spatially separated locations. We recall in this context
that the magnetic helicity over the periodic domains considered
here is gauge invariant and should thus agree with any other
definition, including the absolute helicity defined in Ref. [36].

Contrary to our own work on a nonhelical interlocked
flux configuration [23], which was reducible to a single flux
ring after mutual annihilation of two rings, the configurations
studied here are nonreducible even when mutual annihilation
is taken into account.
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FIG. 21. (Color online) Magnetic energy versus time for the
different initial field configurations together with power laws which
serve as a guide. The decay speed of the IUCAA knot and Borromean
rings lies well in between the helical and nonhelical triple-ring
configuration.

For the helical n-foil knot, we have shown that the magnetic
helicity increases quadratically with n. Furthermore, their
decay exhibits different power laws of magnetic energy which
lie between t−2/3 for the 3-foil knot and t−1/3 for the 7-foil knot.
The latter case corresponds well with the previously discussed
case of three interlocked flux rings that are interlocked in a
helical fashion. The appearance of different power laws seems
surprising since we first expected a uniform power law in
all helical cases in the regime where the magnetic helicity
is so large that the realizability condition plays a role. This
makes us speculate whether there are other quantities that are
different for the various knots and constrain magnetic energy
decay. Such quantities would be higher order topological
invariants [28], which are so far only defined for spatially
separated flux tubes. In order to investigate their role they

FIG. 22. (Color online) Magnetic field lines at t = 0.248tres for
the Borromean rings configuration for Lu = 1000. In the lower-left
corner the interlocked flux rings are clearly visible which differs from
the proposed trefoil knot [28]. The flux ring in the opposite corner
has an internal twist which makes it helical. The colors denote the
strength of the field, where the scale goes from red over green to blue.

FIG. 23. (Color online) Magnetic field lines at t = 0.276tres for
the Borromean rings configuration for Lu = 1000. The two flux rings
in the corners both have an internal twist which makes them helical.
The twist is, however, of opposite sign which means that the whole
configuration does not contain magnetic helicity. The colors denote
the strength of the field, where the scale goes from red over green to
blue.

need to be generalized such that they can be computed for
any magnetic field configuration, similar to the integral for the
magnetic helicity.

The power law of t−1 in the decay of the magnetic energy
for the IUCAA knot and the Borromean rings is different from
the t−3/2 behavior found earlier for the nonhelical triple-ring
configuration. The observed decay rate can be attributed to the
creation of local helical structures that constrain the decay of
the local magnetic field. But we cannot exclude higher order
invariants [28] whose conservation would then constrain the
energy decay.

The Borromean rings showed clearly that local helical
structures can be generated without forcing the system. These
can then impose constraints on the field decay. We suggest that
spatial variations should be taken into account to reformulate
the realizability condition (2), which would increase the lower
bound for the magnetic energy. For astrophysical systems local
magnetic helicity variations have to be considered to give a
more precise description of both relaxation and reconnection
processes.

Both the IUCAA logo and the Borromean rings do not
stay stable during the simulation time and split up into two
separated helical magnetic structures. On the other hand we see
that the helical n-foil knots stay stable. A similar behavior was
seen in [37], where magnetic fields in bubbles inside galaxy
clusters were simulated. In the case of a helical initial magnetic
field the field decays into a confined structure, while for
sufficiently low initial magnetic helicity, separated structures
of opposite magnetic helicity seem more preferable.
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