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ABSTRACT. For a non-uniform lattice in SL(2, R), we consider excursions of a random geodesic in
cusp neighborhoods of the quotient finite area hyperbolic surface or orbifold. We prove a strong law
for a certain partial sum involving these excursions. This generalizes a theorem of Diamond and
Vaaler for continued fractions [9]. In the Teichmüller setting, we consider invariant measures for the
SL(2, R) action on the moduli spaces of quadratic differentials. By the work of Eskin and Mirza-
khani [12], these measures are supported on affine invariant submanifolds of a stratum of quadratic
differentials. For a Teichmüller geodesic random with respect to a SL(2, R)-invariant measure, we
study its excursions in thin parts of the associated submanifold. Under a regularity hypothesis for
the invariant measure, we prove similar strong laws for certain partial sums involving these excur-
sions. The limits in these laws are related to the volume asymptotic of the thin parts. By Siegel-Veech
theory, these are given by Siegel-Veech constants. As a direct consequence, we show that the word
metric of mapping classes that approximate a Teichmüller geodesic ray that is random with respect
to the Masur-Veech measure, grows faster than T log T.

1. INTRODUCTION

This paper provides a specific analogy between non-uniform lattices in SL(2, R) and mapping
class groups. The analogy is established from the point of view of cusp excursions of random
geodesics. For non-uniform lattices in SL(2, R), we consider excursions of a random geodesic
in horoball neighborhoods of the cusps of the quotient hyperbolic surface. For a SL(2, R) orbit
closure in a stratum of a moduli space of quadratic differentials we consider excursions of random
Teichmüller geodesics in a thin part of the orbit closure.

1.1. Non-uniform lattices in SL(2, R). Let Γ be a non-uniform lattice in SL(2, R). The quotient
X = Γ\H2 is a complete finite area surface/orbifold with finitely many cusps c1, . . . , cJ . Let
Xcusps ⊂ X be the union of disjoint horoball neighborhoods of the cusps. The set Xcusps lifts to
a countable collection H of disjoint horoballs in H2. The complement X \ Xcusps is a compact set
Xthick called the thick part of X. The lift X̃thick which we call the thick part in H2, is the complement
of the union of horoballs inH.

The Liouville measure is a natural SL(2, R)-invariant measure on the unit tangent bundle T1H2.
In the upper half-plane model it is given by

d` =
dx dy dθ

2πy2 .

The hyperbolic geodesic flow on T1X is given by the action of the diagonal subgroup. The measure
d` descends to a flow invariant measure on T1X. We will continue to call it Liouville measure. The
conditional measure on the unit tangent circle at any point is the pullback via the visual map of
the standard Lebesgue measure on ∂H2 = S1.
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Since the number of horoballs is countable, d`-almost every geodesic ray is recurrent to Xthick.
By the ergodicity of the geodesic flow and the fellow traveling property of hyperbolic geodesics,
Leb-almost every geodesic ray from a fixed base-point x0 ∈ X ventures into Xcusps infinitely often.
In particular, a geodesic ray γ in H2 whose endpoint r in S1 is Leb-typical enters and leaves
infinitely many horoballs. By analyzing the collection H, Sullivan [28] showed that the lim sup of
the maximum depth that γ achieves in Xcusps is asymptotically (1/2) log T, where T is the time
along γ. It is convenient to assume x0 ∈ Xthick which can be achieved by making Xcusps smaller, if
necessary.

To set up notation, let γ(x0, r) be the geodesic ray from x0 to r ∈ S1. We denote by γT(x0, r)
the point on γ distance T from x0. When the context is clear we will use just γ and γT. Let
π : H2 → X̃thick be the closest point projection. Let N = N(T) be the number of horoballs that
γ intersects up to γT. We enumerate this collection of horoballs H(γ, T) = {H1, H2, . . . , HN} in
the order of increasing time. For all k < N, γ enters and exits Hk; HN may be an exception if
γT ∈ HN . Let dthick be the path metric on X̃thick. For a horoball H that γ enters and exits, the
complete excursion E(γ, H) is defined as the dthick-distance between the entry and exit points. If
γT ∈ HN then the partial excursion E(γ, HN) is the dthick-distance between the entry point for HN
and π(γT).

The total excursion E(γ, T) till time T, defined as in [15], is

E(γ, T) = ∑
k6N

E(γ, Hk).

Along Leb-typical geodesic rays, [15, Proposition 5.4] shows that E(γ, T)/T → ∞. We prove here:

Theorem 1.2. For Lebesgue almost every r in S1,

lim
T→∞

E(γ, T)−max
k6N

E(γ, Hk)

T log T
=

(
2
π

)
`(T1Xcusp)

`(T1X)
.

1.2.1. Continued fractions. Let r ∈ [0, 1]. The continued fraction expansion is given by writing r as

r =
1

a1 +
1

a2 +
1

+ · · ·

,

where each ai ∈N. When r is irrational the expansion is infinite. We denote r as [a1, a2, . . . ].

Theorem 1.3 (Diamond-Vaaler [9]). For Leb-almost every r ∈ [0, 1]

lim
n→∞

n
∑

i=1
ai −max

i6n
ai

n log n
=

1
log 2

.

We will derive Theorem 1.3 from Theorem 1.2 in the special case when X is the modular surface
SL(2, Z)\H2. Excursions of geodesic rays into the maximal cusp neighborhood in X are related
to coefficients in the continued fraction expansion of the point at infinity. Diamond-Vaaler used
techniques specific to the symbolic dynamics (Gauss map) in the theory of continued fractions.
Theorem 1.2 relies on more general features viz. asymptotic for `(Xcusps) and exponential mixing
of the geodesic flow. These features hold for the Teichmüller geodesic flow in the analogous setting
of quadratic differentials. Hence, Theorem 1.9.



1.3.2. Word metric along random geodesics. As a direct implication of Theorem 1.2, we analyze how
the word metric grows along random geodesics.

For distinct points x, y ∈ H2 let γ(x, y) be the hyperbolic geodesic between them. The projected
path is defined by p(x, y) = π(γ(x, y)). Let L(x, y) be the dthick-length of p(x, y), where dthick
is the path metric on the thick part. The quantity L(x0, γT) − E(γ, T) is the time spent by γ in
the interior of Xthick. By the ergodicity of geodesic flow, L(x0, γT)− E(γ, T) grows linearly in T.
Hence, a direct consequence of Theorem 1.2 is:

Theorem 1.4. For Leb-almost every r ∈ S1

lim
T→∞

L(x0, γT)−max
k6N

E(γ, Hk)

T log T
=

(
2
π

)
`(T1Xcusp)

`(T1X)
.

By [15, Lemma 5.1], the projected path p(x0, γT) is a quasi-geodesic in (X̃thick, dthick). A closer
look at the proof of [15, Lemma 5.1] shows that L(x0, γT)− dthick(x0, γT) grows at most linearly
in N. In Lemma 3.8, we show that N grows linearly in T. As a direct consequence of these linear
bounds and Theorem 1.4 we get:

Theorem 1.5. For Leb-almost every r ∈ S1

lim
T→∞

dthick(x0, γT)−max
k6N

E(γ, Hk)

T log T
=

(
2
π

)
`(T1Xcusp)

`(T1X)
.

A base-point x0 ∈H2 is said to be generic if the stabilizer of x0 in Γ is trivial. The Γ-orbit of x0 is
called a lattice. When x0 is generic each lattice point corresponds to a unique group element. Each
point γT has at least one closest lattice point which we denote by hTx0. In fact, this closest point is
unique for almost all points along γ.

The group Γ is finitely generated. A finite choice of generators for Γ defines a proper word
metric dΓ on Γ. Different choices of generators produce quasi-isometric metrics. Let dΓ(1, hT) be
the word length where hTx0 is the lattice point closest to γT.

The group Γ acts cocompactly on X̃thick. So by the Švarc-Milnor lemma, (Γ, dΓ) is quasi-isometric
to (X̃thick, dthick). Thus, as a direct consequence of Theorem 1.5 we get:

Theorem 1.6. There exists a constant M1 > 0 that depends on the word metric such that for Leb-almost
every r ∈ S1

M1T log T < dΓ(1, hT)

for T sufficiently large depending on r.

In fact, if the contribution from the largest excursion is removed, then the word metric grows
like T log T up to uniform multiplicative and additive constants. Theorem 1.6 should be thought
of as a refinement of Proposition 5.6 in [15] which states that along a Leb-generic geodesic ray the
ratio dΓ(1, hT)/T → ∞ as T → ∞.

1.7. Moduli spaces of quadratic differentials. Let S be a hyperbolic surface of finite type. S is
non-sporadic if it is not a sphere with at most four punctures or boundary components, or a torus
with at most one puncture or boundary component. In the sporadic examples, the Teichmüller
space is either trivial or isometric to H2 and the mapping class group is a non-uniform lattice in
SL(2, R). This reduces us to the previous case.

The Teichmüller space T (S) is the space of marked conformal structures on S, or alternatively,
marked hyperbolic metrics on S. The mapping class group Mod(S) is the group of orientation
preserving diffeomorphisms of S modulo isotopy. Mod(S) acts on T (S) by changing the marking.
The quotientM(S) = Mod(S)\T (S) is the moduli space of Riemann surfaces.



The Teichmüller metric is given by

dT (X, Y) =
1
2

inf
f

log K( f ),

where the infimum is over all quasi-conformal maps f : X → Y, and K( f ) is the quasi-conformal
constant of f . The group Mod(S) acts by isometries of dT . Thus, the metric descends to a metric
onM(S). The thin part of T (S) consists of hyperbolic surfaces that contain a simple closed curve
with small hyperbolic length. The thin part of T (S) is obviously Mod(S) invariant. The quotient
Mod(S)\T (S) ⊂M(S) is the thin part of the moduli space of Riemann surfaces.

For a Riemann surface X, let Q(X) be the set of meromorphic quadratic differentials on X with
simple poles at the punctures. If (k1, k2, . . . , kr) are the multiplicities of the zeros then k1 + k2 +
· · ·+ kr = 2g− 2 + n, where n is the number of punctures. A quadratic differential is equivalent
to a half-translation structure on S, i.e. it defines charts from S to C with transition functions of
the form ±z + c. The resulting flat metric has a cone singularity with angle (k + 2)π at a k-order
zero (or with k = −1 for a simple pole). A quadratic differential is unit area if the corresponding
singular flat metric has area 1. The space of unit area quadratic differentials Q can be identified
with the unit cotangent bundle to T (S) [16]. The space Q is stratified by the multiplicity of its
zeros: we denote the stratum with multiplicities α = (k1, k2, . . . , kr) by Q(α). Each stratum is
Mod(S) invariant. We will continue to denote the moduli space by Q(α).

The periods/holonomies of a fixed basis for the homology of S relative to the singularities, give
local co-ordinates on Q(α). The natural volume form µhol in these co-ordinates, called the Masur-
Veech measure, can be thought of as an analog of the Liouville measure. It is invariant under
Mod(S)-action and descends to a finite measure on the moduli space. See [22], [29].

The affine action of SL(2, R) on C = R2 preserves the transitions z → ±z + c. This defines
SL(2, R) action on each stratumQ(α). The action of the diagonal part defines the Teichmüller geo-
desic flow. The compact part SO(2, R) leaves the underlying conformal structure unchanged. This
gives an isometric embedding H2 = SL(2, R)/SO(2, R) → T (S). These are called Teichmüller
discs and they foliate T (S). We denote by SL(2, R)(q) the orbit and by D(q) the Teichmüller disc.

In the flat metric defined by q, a saddle connection is a geodesic segment in the q-metric that
connects a pair of (same or distinct) singularities. For ε > 0, the ε-thin part Q(α)ε is the set of
q ∈ Q(α) such that some saddle connection has q-length squared less than ε.

The points q′ in SL(2, R)(q) for which a particular saddle connection β has q′-length squared
shorter than ε projects to a horoball H in D(q). The point at infinity for H is given by the di-
rection in which β is vertical. For saddle connections that are parallel for q, the ratios of their
holonomies are constant on SL(2, R)(q). Thus, in a collection of parallel saddle connections, the
shortest holonomy will be used to define the horoball.

For a µhol-typical q, the horoballs in D(q) do not form a packing; their interiors have intersec-
tions. Every point X ∈ D(q) is contained in at most finitely many horoballs. But there need not
be an upper bound over D(q) for this number. This makes it hard to estimate the dthick-distance
between the entry and exit points of a geodesic inQ(α)ε, which would have been a natural analog
for an excursion in this context. Instead, we consider excursions in individual horoballs.

The excursions in horoballs in D(q) of a geodesic γ till time T are defined as follows. For a
horoball H that γ enters and exits, the complete excursion E(γ, H) is defined as the distance along
∂H between the entry and exit points. If γT ∈ H then the partial excursion E(γ, H) is defined as
the distance along ∂H between the entry point of γ and πH(γT) where πH : H → ∂H is the closest
point projection. Let H1, . . . , HN(T) denote all the horoballs that γ intersects till time T. The total
excursion E(γ, T) is defined as

E(γ, T) = ∑
k6N(T)

E(γ, Hk).



When horoballs have disjoint interiors these definitions coincide with the definitions in Section 1.1.
With intersections, the excursions E(γ, Hk) can be simultaneous and there can be several partial
excursions when γT is in the thin part.

The main theorem we prove is:

Theorem 1.8. There exists a constant c(α) > 0 such that for µhol-almost every q ∈ Q(α), the Teichmüller
geodesic ray γ that q determines satisfies

lim
T→∞

E(γ, T)− max
k6N(T)

E(γ, Hk)

T log T
= 2εc(α).

The constant c(α) is the Siegel-Veech constant associated to Q(α). See Section 4.5 for the defini-
tion of Siegel-Veech constants.

Theorem 1.8 is a special case of a more general theorem viz. Theorem 1.9 for SL(2, R)-invariant
measures and SL(2, R) invariant loci of saddle connection holonomies.

SL(2, R) orbit closures and invariant measures. Recently, Eskin and Mirzakhani [12, Theorem 1.4]
showed that ergodic SL(2, R)-invariant probability measures are of Lebesgue class and supported
on invariant complex submanifolds in Q(α). These manifolds are affine in the sense that they are
given by linear equations in the holonomy co-ordinates. Furthermore, Eskin, Mirzakhani and Mo-
hammadi [13, Theorem 2.1] showed that all SL(2, R) orbit closures are affine invariant submani-
folds. See [12, Section 1] for more details. More recently, Filip showed that these submanifolds are
algebraic subvarieties. [14].

Let µ be an ergodic SL(2, R)-invariant probability measure supported on an affine invariant
submanifold N . For ε > 0, the ε-thin part Nε is the subset of q ∈ N such that some saddle
connection has q-length squared less than ε. Saddle connections β1, β2 are N -parallel if they are
parallel for an open set of quadratic differentials in N . We assume that µ satisfies the following
regularity condition. For ε, κ > 0, let Nε,κ be the subset of q ∈ N that have at least one saddle
connection β1 with `2

q(β1) 6 ε and a saddle connection β2 not N -parallel to β1 with `2
q(β2) 6 κ.

We assume that there exists m1 > 0 such that for ε, κ small enough

µ (Nε,κ) 6 m1εκ.

For µhol, [23, Section 10, Claim (7)] proves the regularity above. A weaker regularity for any
SL(2, R)-invariant measure is proved in [4, Theorem 1.2].

SL(2, R)-invariant loci. For q ∈ N , let V(q) ∈ R2 \ {(0, 0)} be an assignment of a non-empty subset
(with multiplicity) of holonomies of saddle connections on q. We require that the assignment
varies linearly under SL(2, R) action, i.e. V(gq) = gV(q) for all g ∈ SL(2, R). Such an assignment
V will be called a SL(2, R)-invariant locus. Let c(V, µ) be the Siegel-Veech constant associated to
V and µ. See Section 4.5 for the definition. We assume V satisfies c(V, µ) > 0.

For R > 1, the ε/R-thin part of N corresponding to V is the subset of q ∈ N for which some
saddle connection with holonomy in V(q) has q-length squared less than ε/R. We denote the set
by N (V)ε/R. The regularity condition and the Siegel-Veech formula 4.6 can be used to prove the
volume asymptotic

lim
R→∞

µ(N (V)ε/R)

πε/R
= c(V, µ).

See [11, Section 7] for the main ideas.
Here, for µ-almost every q ∈ N , we consider excursions of the Teichmüller geodesic ray deter-

mined by q in horoballs in D(q) for saddle connections with holonomy in V. Let EV(γ, T) be the
sum till time T of excursions of γ in horoballs for saddle connections with holonomy in V. Let NV
be the number of such excursions of γ till time T. The main theorem we prove is the following:



Theorem 1.9. Let µ-be a regular SL(2, R)-invariant measure supported on an affine invariant submanifold
N . For µ-almost every q ∈ N , the Teichmüller geodesic ray γ that q determines satisfies

lim
T→∞

EV(γ, T)−max
k6NV

E(γ, Hk)

T log T
= 2εc(V, µ),

where c(V, µ) is the Siegel-Veech associated to V and µ.

Theorem 1.8 is a special case of Theorem 1.9 when N = Q(α), µ = µhol and V is the SL(2, R)-
invariant locus of holonomies of all saddle connections.

1.9.1. Configurations with cylinders. For the analog of Theorem 1.6, we state a special case of Theo-
rem 1.9. For completeness we give some background.

For a connected component of Q(α), a configuration C of saddle connections is a geometric
type of maximal collections of homologous saddle connections on a translation or half-translation
surface in it. Here, the homology is the appropriate relative homology; see [24] for details. The
condition in homology implies that the saddle connections in a configuration are parallel. For
holomorphic 1-forms their holonomies coincide. For quadratic differentials their holonomies can
take two values which differ by a factor of 2. The saddle connections with the smaller holonomy
will be called the small saddle connections in C. It was shown in [11] and [24] that in a µhol-typical
degeneration all saddle connections in some configuration shrink to length zero. A configuration
C gives a SL(2, R)-invariant locus VC for Q(α). It follows that c(V, µhol) > 0.

A special subset of configurations corresponds to metric cylinders. A metric cylinder is an em-
bedded cylinder that is a union of freely homotopic closed trajectories of q such that the boundary
components are a concatenation of saddle connections. If some of the saddle connections in a con-
figuration C bound a metric cylinder, we call C a configuration with cylinders. Masur and Zorich
[24] show that each boundary component of such cylinders has exactly one or two saddle connec-
tions in C. The q-length of the core curve is equal to the boundary saddle connection or twice the
length of one of the boundary saddle connections depending on the case.

Given C, the C-thin part of SL(2, R)(q) are points for which the length squared of the small
saddle connections in C is less than ε. Its projection to D(q) is a horoball. The point at infinity for
the horoball is the direction in which the saddle connections in C are vertical.

If ε is sufficiently small compared to the q-area of a cylinder then the core curve is also short
in the hyperbolic metric. For 0 < σ < 1 small enough depending on the orbit closure, we can
specialize further to configurations with cylinders in which some cylinder has area at least σ.
Such a restriction gives a horoball "packing": any point in D(q) is contained at most 3g− 3 + n
horoballs. By construction, the packing is Mod(S) equivariant. Masur [22] showed that in each
Teichmüller disc the packing satisfies Sullivan’s criteria and used it to prove the lower bound in
the log law: a Leb-typical geodesic ray in every Teichmüller disc is recurrent to the thick part with
lim sup of the maximum depth in T (S)ε asymptotically of size (1/2) log T.

Let V be the subset of holonomies of saddle connections forming configurations with cylinders
such that some cylinder has area at least σ. It follows from the Siegel-Veech machinery and [22,
Proposition 2.5] that if σ is small enough depending on Q(α) then ccylσ

> 0, where ccylσ
is the

Siegel-Veech constant for Q(α) for configurations with cylinders such that some cylinder is of
area at least σ. For translation surfaces, there are finer results due to Vorobets. For example, see
[30, Theorem 1.8]. For a geodesic γ ∈ Q(α), let Ecylσ

(γ, T) be the sum till time T of excursions of γ

in horoballs for such configurations. Let Ncylσ
(T) be the number of such excursions till time T. As

a special case of Theorem 1.9 we have



Theorem 1.10. For µhol-almost every q ∈ Q(α), the Teichmüller geodesic γ that q determines satisfies

lim
T→∞

Ecylσ(γ, T)− max
k6Ncylσ

E(γ, Hk)

T log T
= 2εccylσ(α),

where ccylσ(α) is the Seigel-Veech constant forQ(α) for configurations with cylinders such that some cylin-
der is of area at least σ.

Using Theorem 1.10 for the principal stratum, we can prove a lower bound on word-metric
growth along typical Teichmüller geodesics. Along a Teichmüller geodesic, the twisting in the
core curve of a metric cylinder is up to a uniform multiplicative constant, A/ε times the excursion,
where A is the q-area of the cylinder. See [15, Proposition 2.7]. By Mumford compactness, the
closure ofM(S) \M(S)ε is compact. Hence, by Švarc-Milnor lemma, Mod(S) is quasi-isometric
to the thick part T (S) \ T (S)ε. With a base-point X0 in the thick part, the orbit Mod(S)X0 will be
called a Teichmüller lattice. If γ is recurrent to the thick part then along recurrence times γT, there
is a lattice point hTX0 closes to γT. The distance between γT and hTX0 is bounded by the diameter
ofM(S) \M(S)ε. Because of compactness, this diameter is finite. As shown in [15, Proposition
3.11], along a recurrent Teichmüller geodesic γ the total excursion E(γ, T) in the Masur collection
gives a coarse lower bound on the word metric of the approximating group elements hT, i.e. there
exists constants a1, a2 > 0 such that

dMod(S)(1, hT) > a1E(γ, T)− a2.

Thus, as a direct consequence of Theorem 1.10 in the principle stratum we get

Theorem 1.11. There exists a constant M2 > 0 depending on the word metric such that for almost every
q ∈ Q(X0) the approximating group elements hT along the Teichmüller geodesic γ that q determines satisfy

M2T log T < dMod(S)(1, hT)

for all T sufficiently large depending on q.

Suppose q1, q2 have the same uniquely ergodic measured foliation as their vertical foliation. For
such quadratic differentials, Masur [20, Theorem 2] showed then that the geodesic rays that they
determine are positively asymptotic. For any base-point X0 ∈ T (S), a µhol-typical q ∈ Q(X0) has
a uniquely ergodic vertical foliation. Thus, Theorem 1.11 implies the following theorem.

Theorem 1.12. Let X0 ∈ T (S) be a base-point. There is a constant M3 > 0 such that for Leb-almost
every q ∈ Q(X0) the approximating group elements hT along the Teichmüller geodesic γ that q determines
satisfy

M3T log T < dMod(S)(1, hT)

for all T sufficiently large depending on q.

1.13. Strategy of proof. The main idea is to approximate the sum of excursions till T by an integral
over time of a function defined over T1Xcusps or N (V)ε. This function is not L1. Analyzing the
largest excursion, we prove that if it exceeds T(log T)c for some 1 > c > 1/2, then it is the
unique excursion that exceeds this threshold. This follows from a Borel-Cantelli argument which
requires quasi-independence of excursions. We use mixing of the geodesic flow to establish quasi-
independence. See Proposition 3.2. By removing the largest excursion from the sum we get a
quantity that can be approximated by a suitable T-dependent truncation of the above function.
This truncation is L1. The leading term of its L1 norm is a constant times log T. The constant is in
terms of the proportional volume of the cusp neighborhoods. To conclude the main theorems, we
apply an effective ergodic theorem to the truncation. This shows that the integral over [0, T] of the
truncation is equal to T times the L1 norm of the truncation with an error term which is o(T log T).



To prove the effective ergodic theorem viz. Theorem 2.4, we use a decay of correlations for the
geodesic flow. This decay of correlations is independently due to Moore and Ratner [26] [27] in
the context of non-uniform lattices. For quadratic differentials, the decay is due to Avila-Resende
[5] for the Masur-Veech measure, and Avila-Gouëzel [2] for general SL(2, R)-invariant measures.

In the setting of quadratic differentials matters are complicated by the fact that a half-translation
surface can have several non-parallel short saddle connections. While this number is finite for
any given half-translation surface there is no upper bound for it over the SL(2, R)-orbit closure.
This means that a Teichmüller geodesic can do several excursions simultaneously and typically
it does so. We impose a regularity condition on the SL(2, R)-invariant measure, namely quasi-
independence for two non-parallel saddle connections to be simultaneously short. To prove that
the truncation is L1 the main technical work leverages two facts: the above quasi-independence
and a bound due to Eskin and Masur [10] for the number of short saddle connections in terms
of length of shortest saddle connection. We also show that the leading term of its L1-norm is
asymptotically a constant times log T. The constant is related to the asymptotic of volumes of thin
parts. By Siegel-Veech theory, these are the associated Siegel-Veech constants.
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the Newton Institute for their hospitality. The research was supported by a Global Research Fel-
lowship with the Institute of Advanced Study at the University of Warwick. I thank the referee
for comments that improved the paper.

2. ERGODIC THEORY

This section develops the ergodic theoretic tools which will be used later. In particular, the
main goal is to derive the effective ergodic theorem viz. Theorem 2.4 which gives a uniform rate
of convergence in the ergodic theorem simultaneously for a sequence of non-negative functions
that satisfy a certain decay of correlations.

Let (X,B, `) be a probability measure space. Let gt be a measure preserving flow on X such
that gt is exponentially mixing. More precisely, we assume that an appropriate subspace of L2(X)
satisfies following decay of correlations: if f1 and f2 are functions in the subspace then

∫
X f1 d` =∫

X f2 d` = 0 and there exists constants K, ρ > 0 such that

(2.1)
∣∣∣∣∫X

f1(gsx) f2(gtx) d`
∣∣∣∣ 6 K|t− s|e−ρ|t−s|‖ f1‖L2‖ f2‖L2 .

For a function f ∈ L1(X), let I( f ) =
∫

X f d`. We denote by L the subspace in L2(X) of functions
f such that the function f − I( f ) satisfies the decay of correlations 2.1 above.

Lemma 2.2. Any function f ∈ L with I( f ) = 0 satisfies:

(2.3)
∫

X

(∫ T

0
f (gtx) dt

)2

d` 6 2KT‖ f ‖2
L2 .



Proof. Observe that∫
X

(∫ T

0
f (gtx) dt

)2

d` =
∫

X

(∫ T

0

∫ T

0
f (gsx) f (gtx) ds dt

)
d`

=
∫ T

0

∫ T

0

(∫
X

f (gsx) f (gtx)d`
)

ds dt

6
∫ T

0

∫ T

0
K|t− s|e−ρ|t−s|‖ f ‖2

L2 ds dt

where we have used the decay of correlations 2.1 in the last inequality. A direct computation
shows ∫ T

0

∫ T

0
K|t− s|e−ρ|t−s|‖ f ‖2

L2 ds dt = K‖ f ‖2
L2

(
T
ρ2 (1 + e−ρT) +

2
ρ3 (−1 + e−ρT)

)
6 2KT‖ f ‖2

L2

finishing the proof of the lemma. �

Suppose n : R→N is a function that is constant on each interval [2k, 2k+1).

Theorem 2.4. For any c > 1/2, m > 1 and any sequence of non-negative functions f j ∈ L, almost every
x satisfies

1
m

T‖ fn‖L1 − T1/2(log T)c (‖ fn‖2
L2 − ‖ fn‖2

L1

)1/2
6
∫ T

0
fn(gtx)dt

6 mT‖ fn‖L1 + T1/2(log T)c (‖ fn‖2
L2 − ‖ fn‖2

L1

)1/2

for all T large enough depending on x and m and where n = n(T).

Proof. Given a function f ∈ L define

F(x) = f (x)− I( f ).

Then I(F) = 0 and so by Lemma 2.2∫
X

(∫ T

0
F(gtx) dt

)2

d` 6 2KT‖F‖2
L2

for all T. By Chebysheff’s inequality, for any positive function r(T, F) we have

(2.5) `

(
x such that

(∫ T

0
F(gtx) dt

)2

> r(T, F)

)
6

2KT‖F‖2
L2

r(T, F)
.

Let c > 1/2 and set r(T, F) = T(log T)2c‖F‖2
L2 in 2.5. Then we get

(2.6) `

(
x such that

(∫ T

0
F(gtx) dt

)2

> T(log T)2c‖F‖2
L2

)
6

2K
(log T)2c .

Starting from our sequence f j, let Fj be the sequence of functions given by

Fj(x) = f j(x)− I( f j).

The estimate 2.6 above is satisfied by all functions Fj and in particular by Fn where n = n(T). Fix
r = 1/a for some positive integer a > 1. Observe that for the sequence Tk = 2rk

∞

∑
k=1

2K
(log Tk)2c =

∞

∑
k=1

2K
(rk)2c < ∞.



Hence by Borel-Cantelli lemma, almost every x satisfies

(2.7)
(∫ Tk

0
Fn(gtx) dt

)2

6 Tk(log Tk)
2c‖Fn‖2

L2

for all k large enough depending on x and a. Similarly, setting r(T, F) = (T/2r)(log(T/2r))2c‖F‖2
L2

and shifting n(T) to n(T/2), the same reasoning by Borel-Cantellii lemma implies that almost
every x satisfies

(2.8)
(∫ Tk+1

0
Fn(gtx) dt

)2

6 Tk(log Tk)
2c‖Fn‖2

L2

for all k large enough depending on x and a. Hence a full measure set of x satisfy both 2.7 and 2.8.
Noting that Fn(gtx) = fn(gtx)− I( fn) and ‖Fn‖2

L2 = ‖ fn‖2
L2 − I( fn)2, the above estimates can be

rewritten as ∣∣∣∣∫ Tk

0
fn(gtx) dt− Tk I( fn)

∣∣∣∣ 6 T1/2
k (log Tk)

c (‖ fn‖L2 − I( fn)
2)1/2

and ∣∣∣∣∫ Tk+1

0
fn(gtx) dt− Tk+1 I( fn)

∣∣∣∣ 6 T1/2
k (log Tk)

c (‖ fn‖L2 − I( fn)
2)1/2

.

Over the intermediate times Tk < T < Tk+1 the number n does not vary. So the function fn being
considered remains the same. Now we use the assumption that fn is a non-negative function to get
an estimate such as above for these intermediate times. Since fn is non-negative, the time integral
of fn is non-decreasing. In particular,∫ Tk

0
fn(gtx) dt 6

∫ T

0
fn(gtx) dt 6

∫ Tk+1

0
fn(gtx) dt.

Observe that

(2.9) Tk I( fn)− T1/2
k (log Tk)

c (‖ fn‖2
L2 − I( fn)

2)1/2
>

1
2r TI( fn)− T1/2(log T)c (‖ fn‖2

L2 − I( fn)
)1/2

and
(2.10)

Tk+1 I( fn) + T1/2
k (log Tk)

c (‖ fn‖2
L2 − I( fn)

)1/2
6 2rTI( fn) + T1/2(log T)c (‖ fn‖2

L2 − I( fn)
)1/2

.

Finally, note I( fn) = ‖ fn‖L1 . The left hand side of 2.9 is the lower bound in 2.7 and the left hand
side in 2.10 is the upper bound in 2.8. Thus we get

1
2r TI( fn)− T1/2(log T)c (‖ fn‖2

L2 − I( fn)
)1/2
6
∫ T

0
fn(gtx) dt

6 2rTI( fn) + T1/2(log T)c (‖ fn‖2
L2 − I( fn)

)1/2
.

The theorem follows by choosing a large enough such that r = 1/a satisfies 2r < m. �

We also prove a variant of Lemma 2.2 which we will need later for quasi-independence of
excursions.

Lemma 2.11. For any S1 < S2 < T and non-negative function f ∈ L

(2.12)
∫

X

(∫ S2

S1

f (gsx) ds
∫ T

S2

f (gtx) dt
)

d` < (S2 − S1)(T − S2)‖ f ‖2
L1 +

5K
ρ

(
‖ f ‖2

L2 − I( f )2)
where K, c are the constants in the decay of correlations 2.1.



Proof. For any function f ∈ L, define F by

F(x) = f (x)− I( f ).

Then I(F) = 0 and so it satisfies the decay of correlations 2.1. Note that∫
X

F(gsx)F(gtx) d` =
∫

X
f (gsx) f (gtx) d`− I( f )2

and ‖F|2L2 = ‖ f ‖2
L2 − I( f )2. It follows that f satisfies∣∣∣∣∫X

f (gsx) f (gtx) d`− I( f )2
∣∣∣∣ 6 K|t− s|e−ρ|t−s| (‖ f ‖2

L2 − I( f )2)
which implies ∣∣∣∣∫X

f (gsx) f (gtx) d`
∣∣∣∣ 6 I( f )2 + K|t− s|e−ρ|t−s| (‖ f ‖2

L2 − I( f )2) .

For non-negative functions this implies∫
X

(∫ S2

S1

f (gsx) ds
∫ T

S2

f (gtx) dt
)

d` =
∫ T

S2

∫ S2

S1

(∫
X

f (gsx) f (gtx) d`
)

ds dt

6
∫ T

S2

∫ S2

S1

[
I( f )2 + K|t− s|e−ρ|t−s| (‖ f ‖2

L2 − I( f )2)] ds dt

< (S2 − S1)(T − S2)I( f )2 +
5K
ρ

(
‖ f ‖2

L2 − I( f )2)
where the last inequality follows from a direct computation. �

3. PARTIAL SUMS OF EXCURSIONS FOR NON-UNIFORM LATTICES IN SL(2, R)

The Liouville measure ` on T1H2 is invariant under the SL(2, R) action and descends to a flow-
invariant measure on T1X = Γ\T1H2. To get a probability measure ` on T1X we normalize by
passing to

d`→ 1
2π|χ(X)|d`.

For notational simplicity we continue to call the probability measure d`.
The geodesic flow on T1X is given by the action of the diagonal subgroup of SL(2, R). It is

ergodic with respect to `. In fact, it is known to be exponentially mixing. As shown in [26],
SO(2, R)-invariant L2-functions on T1X satisfy the following decay of correlations for the diagonal
flow: There exists constants K > 0, ρ > 0 such that for any pair f1, f2 of SO(2, R)-invariant L2-
functions on T1X with

∫
T1X f1d` =

∫
T1X f2d` = 0

(3.1)
∫

T1X
f1(x) f2(gtx) d` 6 Kte−ρt‖ f1‖L2‖ f2‖L2 .

See also [27, Theorem 2], [25, Corollary 2.1]. In particular, the lifts to T1X of L2-functions on X are
by default SO(2, R) invariant. So the above decay of correlations applies to them.

For R > 1, let YR be the subset of the horoballs H consisting of those points which are at least
distance log R from the boundary of the horoballs in the hyperbolic metric, i.e.

YR :=
⋃

H∈H
{x ∈ H : d(x, ∂H) > log R}.



Let XR ⊂ X be the quotient of Γ\YR. In particular, X1 = Xcusp. We will write T1Y for the restriction
of the unit tangent bundle to any subset Y ⊂ X. An elementary calculation shows that

`(T1XR) =

(
1
R

)
`(T1Xcusp)

`(T1X)
=

CX

R

where to simplify notation, henceforth we set `(T1Xcusp)/`(T1X) to be CX. Let χR be the charac-
teristic function of T1XR and let

φR = χR/2 − χR.
Note that

‖φR‖L1 =
CX

R
and ‖φR‖L2 =

√
CX√
R

.

During an excursion of size at least R, a geodesic γ must cross T1XR/2 \ T1XR twice during a
complete excursion and at least once during a partial excursion. By basic hyperbolic geometry,
the geodesic spends time greater than log 2 each time it crosses T1XR/2 \ T1XR.

The next proposition allows us to show that along Leb-almost every geodesic ray, for all times
T large enough there is at most a single "large" excursion. The proposition is a continuous time
refinement of [9, Lemma 2.1] and the proof uses Lemma 2.11.

Proposition 3.2. For any c > 1/2 and for `-every v ∈ T1X there exists T(v) such that for all T > T(v)

E(γ, Hi) > T(log T)c

for at most a single Hi ∈ Hγ,T and where γ is the geodesic ray with v(γ0) = v.

For the rest of the discussion, let Tn = 2n. Proposition 3.2 follows from the following proposition.

Proposition 3.3. For any c > 1/2 and for `-every v ∈ T1X there exists non-negative integer n(v) such
that for all n > n(v)

E(γ, Hi) > Tn−1(log Tn−1)
c

for at most single Hi ∈ Hγ,Tn and where γ is the geodesic ray with v(γ0) = v.

Proof. Let λ = log Tn−1 + c log log Tn−1. By basic hyperbolic geometry, the time a geodesic takes to
go from the boundary of a horoball to XR where R = Tn−1(log Tn−1)

c is bounded between λ and

log
(

Tn−1(log Tn−1)
c +

√
T2

n−1(log Tn−1)2c − 1
)
< λ + log 2. Similarly, let λ′ = λ− log 2. Then λ′

is a lower bound on the time it takes a geodesic to go from the boundary of a horoball to XR/2
where R = Tn−1(log Tn−1)

c.
For positive integers j 6 bTn/λc, let Sj = jλ. Let

Vn,k =

{
v ∈ T1X such that

∫ Sk+2+λ′

Sk

φR(v(γs)) ds > log 2 and
∫ Tn

Sk+2+λ′
φR(v(γt)) dt > log 2

}
.

By applying Chebysheff’s inequality to the estimate in Lemma 2.11 for the function φR we get

`(Vn,k) 6
(Sk+2 + λ′ − SK)(Tn − Sk+2 − λ′)

(log 2)2
C2

X
R2 +

1
(log 2)2

(
5KCX

ρR

[
1− CX

R

])
<

6λC2
X

(log 2)2Tn−1(log Tn−1)2c +
5KCX

ρ(log 2)2Tn−1(log Tn−1)c .

In the last inequality we have used Tn − Sk+2 − λ′ < Tn = 2Tn−1.
Let W be the set of v ∈ T1X such that the corresponding geodesic γ has two excursions E(γ, Hi)

and E(γ, Hj) till time Tn satisfying E(γ, Hi) > Tn−1(log Tn−1)
c and E(γ, Hj) > Tn−1(log Tn−1)

c.
Let S be the time at which the first big excursion E(γ, Hi) begins. Let k be such that Sk 6 S < Sk+1.



Because of our choice of λ the first excursion E(γ, Hi) must end after Sk+2. Thus, the second big
excursion E(γ, Hj) also has to begin after Sk+2. Because of the choice of λ′ the geodesic cannot
cross T1XR/2 \ T1XR during E(γ, Hj) before Sk+2 + λ′. Thus, v ∈ Vn,k. Let

Vn =
bTn/λc−2⋃

k=0

Vn,k.

Using the upper bound on `(Vn,k) we get

`(Vn) 6
bTn/λc

∑
k=1

`(Vn,k) <
6TnC2

X
(log 2)2Tn−1(log Tn−1)2c +

5KTnCX

ρ(log 2)2λTn−1(log Tn−1)c

<
b1Tn

Tn−1(log Tn−1)2c +
b2Tn

Tn−1(log Tn−1)1+c

6
2b1

(log Tn−1)2c +
2b2

(log Tn−1)1+c

for some constants b1, b2 > 0. Since c > 1/2 it follows that

∑
n
`(Vn) < ∞.

Proposition 3.3 then follows by the Borel-Cantelli lemma. �

Proof of Proposition 3.2. Let n be such that Tn−1 < T 6 Tn. Since E(γ, H) > T(log T)c implies
E(γ, H) > Tn−1(log Tn−1)

c, Proposition 3.2 follows from Proposition 3.3. �

Remark 3.4. It is important to observe that Proposition 3.3 holds under the weaker condition that there is
a constant A > 1 such that for R sufficiently large

1
AR

< `(T1XR) <
A
R

.

This observation will be of relevance for a similar proposition in the setting of quadratic differentials.

Recall that x0 is a base-point and T1
x0

X can be identified with S1.

Corollary 3.5. For any c > 1/2 and Leb-almost every r ∈ S1 there is T(r) such that if T > T(r) then

E(γ, Hi) > T(log T)c

for at most single Hi ∈ Hγ,T and where γ is the geodesic ray from x0 to r.

Proof. It follows from Proposition 3.2 that the corollary is true for generic base-points. Suppose
γ0 and γ1 are geodesic rays from distinct base-points x0 and x1 converging to the same point
r at infinity and let H be a horoball. Let πH be the closest point projection to H and let a =
d∂H(πHx0, πHx1). Then we have the crude bound

E(γ0, H)− 2ae−τ − 2 6 E(γ1, H) 6 E(γ, H) + 2ae−τ + 2,

where τ is the minimum of d(x0, H) and d(x1, H). So for H that is far enough the excursions by γ0
and γ1 are the same up to a uniform additive constant. This implies the corollary. �

Define the function ψ : X → R by

ψ(x) =
{

0 if x ∈ Xthick( 2
π

)
ed(x,∂Xthick) otherwise.

Let Ψ : T1X → R be the lift of ψ to T1X. By definition, the function Ψ is SO(2, R)-invariant.



Suppose a geodesic ray γ has a complete excursion in a horoball H entering and exiting H at
times T1 and T2 respectively. We relate the time integral of Ψ between T1 and T2 to E(γ, H).

Conjugating if necessary, we may assume that H is the horoball {z : Im(z) > 1} in the upper
half-space model. The function ψ then takes the form ψ(z) = (2/π)Im(z) on H and 0 otherwise.
Conjugating further by z → z + a for some a ∈ R we may assume that γ is the geodesic with
endpoints {A,−A} ∈ R for some A > 1. We parameterize γ with unit speed from A to −A.
Then, as complex numbers γ(T1) =

√
A2 − 1+ i and γ(T2) = −

√
A2 − 1+ i. Note that E(γ, H) =

2
√

A2 − 1. Let θ0 = Arg(γ(T1)). Then Arg(γ(T2)) = π − θ0. Using elementary integration, it
follows that ∫ T2

T1

Ψ(v(γt)) dt =
∫ π−θ0

θ0

2A
π

dθ =
2A
π

(π − 2θ0) = 2A− 4Aθ0

π

Since sin θ0 = 1/A, it follows that

(3.6) E(γ, H)− 2 <
∫ T2

T1

Ψ(v(γt)) dt < E(γ, H) + 2

i.e., for complete excursions the time integral of Ψ is E(γ, H) up to a uniform additive error.
To analyze a partial excursion, we parameterize γ by Aeiθ between θ0 and π − θ0. Suppose

θ ∈ (θ0, π − θ0). Then the partial excursion till Aeiθ is given by

E(γ, H) = A (cos θ0 − cos θ) .

On the other hand, the time integral is given by∫
Ψ(v(γt)) dt =

2A
π

(θ − θ0),

where T3 < T are the times such that γT3 = Aeiθ0 and γT = Aeiθ . The difference of the right hand
sides above is symmetric about π/2 so we may restrict to (θ0, π/2]. Then the difference has a
crude upper bound given by

A
(

2
π
(θ − θ0)− (cos θ0 − cos θ)

)
6

2A
π

θ 6 A sin θ.

Note that Ψ(v(γθ)) = (2/π)Im(Aeiθ) = (2/π)A sin θ. It follows that for a partial excursion

(3.7) E(γ, H)− π

2
Ψ(v(γT)) <

∫ T

T3

Ψ(v(γt)) dt < E(γ, H) +
π

2
Ψ(v(γT)),

where T3 < T is the time at which the excursion begins.
Recall that for χR is the characteristic function of T1XR. We define truncations of Ψ by

ΨR(v) = Ψ(v)(χ1(v)− χR(v)),

where χ1 is the characteristic function of T1X1 = T1Xcusp. Note that while Ψ is not L1 the trunca-
tions ΨR satisfy

‖ΨR‖L1 =
2CX

π
log R and ‖ΨR‖L2 =

2
√

CX

π

√
R.

Inequalities 3.6 and 3.7 show that partial sums of excursions (minus the largest excursion) i.e., the
numerator in Theorem 1.2 is estimated by the time integral of a suitable truncation of Ψ up to an
additive error that is linear in the number N of excursions. The next lemma shows that N grows
linearly in T.

Lemma 3.8. There is a constant η > 0 such that for Leb-almost every r ∈ S1

lim
T→∞

N
T

= η.



Proof of Lemma 3.8. The lemma follows from an approach similar to Schmidt’s theorem in the the-
ory of Diophantine approximation [1, Theorem 1.1 with k = 1]. For completeness, we give a
weaker but more direct proof below.

For v ∈ T1(X \ Xthick), let γ be the geodesic such that v(γ0) = v i.e., the geodesic whose unit
tangent vector at t = 0 is v. For almost every v, the geodesic γ intersects ∂Xthick both in the forward
and backward directions. Let Tb < 0 and Tf > 0 be the first instances of these intersections, i.e.
the first instances backward and forward along γ when it intersects the boundary of the horoball
containing π(v). Set

ξ(v) =
1

Tf − Tb
.

This defines a non-negative function ξ : T1(X \ Xthick) → R>0 which we extend by setting it zero
outside. It is straightforward to see that for almost every r ∈ S1∫ T

0
ξ(v(γt)) dt = N.

We claim that ξ ∈ L1(T1X). Let Rk = 1 + (1/2k) and consider T1XRk \ T1XRk−1 . Since log(1 +

(1/2k)) = (1/2k)− (1/22k+1) + higher order terms there exists a constant b3 > 0 such that

`
(

T1XRk−1 \ T1XRk

)
<

b3

2k

for all k large enough. By basic hyperbolic geometry, for any v ∈ T1XRk \ T1XRk−1

ξ(v) 6
1

2 log
(

1 + (1/2k) +
√
(1 + (1/2k))2 − 1

)
<

1

2 log
(

1 +
√

1/2k + (1/2k)
)

< b42k/2

for some constant b4 > 0 and all k large enough. This gives the bound∫
T1XRk\T

1XRk−1

ξ d` <
b3b4

2k/2 .

which proves the claim that ξ ∈ L1. The lemma follows by applying the ergodic theorem to ξ. �

Proof of Theorem 1.2. While not necessary, for notational simplicity we set the constants c > 1/2
in Proposition 3.2 and in Theorem 2.4 to be equal. Consider the sequence of functions Ψ2k . For T
such that 2k 6 T < 2k+1 we set n(T) = bk + c log2 kc where b c is the greatest integer function. By
Theorem 2.4 applied to the sequence of functions Ψ2n , we have that for any c > 1/2 and m > 1,
`-almost every v = v(γ0) ∈ T1X satisfies the lower bound

1
m

T‖Ψ2n‖L1 − T1/2(log T)c(‖Ψ2n‖2
L2 − ‖Ψ2n‖2

L1)
1/2 6

∫ T

0
Ψ2n(v(γt)) dt

and the upper bound∫ T

0
Ψ2n(v(γt)) dt 6 mT‖Ψ2n‖L1 + T1/2(log T)c(‖Ψ2n‖2

L2 − ‖Ψ2n‖2
L1)

1/2

for all T large enough depending on v and m. Let r be the ratio T(log T)c/2n. Then 1 < r < 3.
Substituting the L1 and L2 norms of Ψ2n in the term T1/2(log T)c(‖Ψ2n‖2

L2 − ‖Ψ2n‖2
L1)

1/2, we get



the upper bound

T1/2(log T)c
(

4CX

rπ2 T(log T)c − 4C2
X

π2 (log T + c log log T − log r)2
)1/2

6
2
√

CX

π
√

r
T(log T)3c/2.

Thus the preceding pair of inequalities become

(3.9)
2CX

mπ
T(log T + c log log T − log r)− 2

√
CX

π
√

r
T(log T)3c/2 6

∫ T

0
Ψ2n(v(γt)) dt

(3.10)
∫ T

0
Ψ2n(v(γt)) dt 6

2mCX

π
T(log T + c log log T − log r) +

2
√

CX

π
√

r
T(log T)3c/2

We choose c < 2/3. Let Um be the full measure set in T1X satisfying 3.9 and 3.10. Consider the
countable intersection

U =
⋂

a∈N

U1+1/a.

Then U has full measure and for v in U the constraint c < 2/3 implies

(3.11) lim
T→∞

1
T log T

∫ T

0
Ψ2n(v(γt)) dt =

2CX

π
.

By the same reasoning as in the proof of Corollary 3.5 the above limit is true for any base-point x0
and Leb-almost every r ∈ S1.

It remains to relate the time integral of Ψ2n to partial sum of excursions. Enumerate the horoballs
inHγ,T as H1, . . . , HN in the order of increasing time. For a complete excursion E(γ, Hi) satisfying
E(γ, Hi) 6 T(log T)c, the difference between E(γ, Hi) and the time integral of Ψ2n between the
entry and exit points in Hi is at most 2 by 3.6. This implies that the additive error contributed by
complete excursions less than the threshold is bounded above by 2N.

If E(γ, Hi) > T(log T)c then by Corollary 3.5 it is the unique excursion that exceeds the thresh-
old. Let T1 < T2 be the entry and exit times in Hi. In this case, note that∫ T2

T1

Ψ2n(v(γt)) dt < 2T(log T)c.

If there is a partial excursion then let T3 < T be the time at which γ enters HN . If the partial
excursion exceeds the threshold then notice that∫ T

T3

Ψ2n(v(γt)) dt < 2T(log T)c.

Otherwise, by 3.7 the difference between the time integral and the partial excursion is at most
(π/2)Ψ(v(γT)) which in turn is bounded above by T(log T)c.

Using the estimates above and also 3.6 and 3.7 we get∫ T

0
Ψ2n(v(γt)) dt− 2N − 4T(log T)c < E(γ, T)− max

16k6N
E(γ, Hk)

<
∫ T

0
Ψ2n(v(γt)) dt + 2N + 4T(log T)c.

(3.12)

Theorem 1.2 then follows from putting together 3.11, 3.12 and Lemma 3.8. �

Proof of Diamond-Vaaler theorem 1.3. For the modular surface X = SL(2, Z)\H2 the lift to H2 of
the largest embedded cusp neighborhood in X is the well-known Ford packing: in the upper half
space model, we get horoballs resting at rational points, the Euclidean radius of the horoball with
the point at infinity p/q in reduced form being 1/2q2.



With the cusp neighborhood fixed as above, Theorem 1.2 for X states that for any base-point
and Leb-almost every r ∈ S1

(3.13) lim
T→∞

E(γ, T)−max
k6N

E(γ, Hk)

T log T
=

6
π2 .

where γ is the geodesic ray from some base-point x0 to r. To derive the Diamond-Vaaler result
(Theorem 1.3) from the above limit, we relate excursions to continued fraction coefficients of r and
time T along the geodesic to the number n of continued fraction coefficients.

In the upper half space model, for r ∈ [0, 1] irrational, let [a1, · · · , an, · · · ] be the infinite contin-
ued fraction expansion of r. Let pn/qn = [a1, . . . , an] be the n-th convergent of r and let H′n be the
horoball with pn/qn as the point at infinity. We first consider vertical geodesics: for r ∈ [0, 1] let γ′

be the vertical geodesic ray from (r, i) ∈H2 to (r, 0) ∈ S1 = R∪∞.
The ray γ′ has excursions in horoballs that are given by rational approximations of r satisfying

|r− p/q| 6 1/2q2. By a classical theorem for continued fractions, such rationals are a subset of the
convergents pn/qn. If an > 2 then an − 1 < E(γ′, H′n) < an + 1. However, if an = 1 then γ′ may
or may not intersect H′n and we set E(γ′, H′n) = 0 if it does not. In any case, excursions of γ′ are
equal to the coefficients up to a uniform additive error and hence we get

(3.14)
n

∑
k=1

E(γ′, H′k)− n 6
n

∑
k=1

ak 6
n

∑
k=1

E(γ′, H′k) + n.

By classical theory of continued fractions ([8, Proposition 4.8.2(4)]) for Leb-almost every r

lim
n→∞

log qn

n
=

π2

12 log 2
.

Since pn/qn → r, the same limit is true for log pn/n. Up to a transposition of columns, the matrix
Qn with columns [pn−1, qn−1]

t and [pn, qn]t is in SL(2, Z). The hyperbolic translation length of the
matrix up to a uniform additive error is 2 log(trace). By the above discussion log(trace) is log qn
up to a uniform additive error. So let 2 log qn = Tn. Recall that Qn acts on the upper half plane by
Mobius transformations. Geometrically Qn(r, i) is the orbit point closest to γ′Tn

with the distance
between them bounded above by the diameter of Xthick, i.e. uniformly bounded from above. This
implies that along the sequence of times 2 log qn = Tn the limit n/Tn is 6 log 2/π2. It should be
pointed out that the number N of horoballs that γ′ actually intersects till Tn is less than or equal
to n, and in fact N/Tn will have a different limit as Tn → ∞.

The geodesic ray γ from x0 to r and the vertical ray γ′ are asymptotic. Set

a = max
H∈H

d∂H(πHx0, πH(r, i))

where πH is the closest point projection to H. Then we have the crude bound

E(γ, H)− 2ae−τ − 2 < E(γ′, H) < E(γ, H) + 2ae−τ + 2

where τ is minimum of d(x0, H) and d((r, i), H). Let d be the distance between horocycles with
r at infinity that pass through x0 and (r, i) respectively. Then depending on the case we get the
crude bound

E(γ, Tn± d)− 2(a+ 1)(n+ 2η(Tn + d)) 6 ∑
k6n

E(γ′, H′k) 6 E(γ, Tn± d)+ 2(a+ 1)(n+ 2η(Tn + d)).

The estimate above implies that

lim
n→∞

∑
k6n

E(γ′, H′k)−max
k6n

E(γ′, H′k)

T log T
= lim

Tn→∞

E(γ, Tn ± d)−max
k6N

E(γ, Hk)

Tn log Tn
=

6
π2



where the second equality follows from the fact that passing to Tn instead Tn ± d in the numerator
introduces an additive error that is at most ed. Finally, note that ak − 1 6 E(γ′, H′k) 6 ak + 1 and
so for Leb-almost every r ∈ [0, 1]

lim
n→∞

n
∑

k=1
ak −max

k6n
ak

n log n
= lim

n→∞

 ∑
k6n

E(γ′, H′k)−max
k6n

E(γ′, H′k)

Tn log Tn

(Tn log Tn

n log n

)

=

(
6

π2

)(
π2

6 log 2

)
=

1
log 2

finishing the proof of Theorem 1.3.
�

4. PARTIAL SUMS ALONG RANDOM TEICHMÜLLER GEODESICS IN A STRATUM OF QUADRATIC
DIFFERENTIALS

4.1. Preliminaries from Teichmüller theory. Let S be a hyperbolic surface of finite type, i.e. a
surface of finite area which may have boundary components or punctures. We say such a surface
S is sporadic if it is a sphere with at most four punctures or boundary components, or a torus with
at most one puncture or boundary component. We shall primarily be interested in non-sporadic
surfaces, as in the sporadic cases the Teichmüller spaces are either trivial, or isometric to H2, which
reduces us to the case of a non-uniform lattice in SL(2, R).

Let S be a non-sporadic surface which has no boundary components, but may have punctures.
The Teichmüller space T (S) is the space of marked conformal structures on S. Alternatively, by
uniformization, it is the space of marked hyperbolic metrics on S. We shall consider T (S) together
with the Teichmüller metric

dT (X, Y) = 1
2 inf

f
log K( f )

where the infimum is taken over all quasiconformal maps f : X → Y, and K( f ) is the quasicon-
formal constant for the map f . The mapping class group Mod(S) acts by isometries on T (S). Let
T (S)ε be the thin part of Teichmüller space, i.e. all surfaces which contain a curve of hyperbolic
length at most ε. Let M(S) be the moduli space Mod(S)\T (S). The thin part T (S) is Mod(S)
invariant. The thin partM(S)ε of moduli space is the quotient Mod(S)\T (S)ε.

Let Q(X) be the unit area meromorphic quadratic differentials on X with simple poles at all
the punctures of X. If (k1, k2, . . . , kr) are the multiplicities of the zeros of a quadratic differential
q then k1 + · · · + kr = 4g − 4 + 2m where m is the number of punctures of X. By contour inte-
gration, a quadratic differential q defines a half-translation structure on S, i.e. it defines charts
from S to C with transition functions of the form z → ±z + c. The resulting flat metric has a cone
singularity with cone angle (k + 2)π at a zero of q order k (or with k = −1 at a simple pole). A
quadratic differential is unit area if the corresponding flat metric has unit area. The space Q of
unit area quadratic differentials can be identified with the unit cotangent bundle to T (S) [16]. We
let π : Q → T (S) be the projection which sends a quadratic differential to its underlying Riemann
surface. The space Q is stratified by the multiplicities of the zeros: we denote the strata with
multiplicities α = (k1, . . . , kr) by Q(α). For each stratum, the number of connected components
is bounded. See [18], [7]. To simplify notation, we continue to denote Q(α) when we mean a
connected component of Q(α).

For any q ∈ Q(α) there is a canonical ramified double cover such that the lift of q is square of
a holomorphic 1-form ω and (X, q) is a quotient of the double cover with respect to hyper-elliptic
involution. Fixing a basis for the anti-invariant (with respect to hyper-elliptic involution) part of
the homology of the double cover relative to the singularities, the holonomies (periods) given by



integrating ω over the basis defines local co-ordinates on Q(α). The natural volume form in these
co-ordinates defines the Masur-Veech measure. Alternatively, it is known as the holonomy mea-
sure. We shall denote it by µhol. The measure µhol is Mod(S)-invariant. So it descends to a measure
on Mod(S)\Q(α), the corresponding stratum of the moduli space of quadratic differentials. We
continue to denote it by Q(α). The µhol-volume of Q(α) is finite [21] [29].

The affine action of SL(2, R) on the charts to C = R2 preserves the glueing by half-translations.
This defines an action of SL(2, R) on Q(α). The orbits SL(2, R)(q) foliate Q(α). The compact
part SO(2, R) acts by rotations of R2. Hence, it preserves the conformal structure. The action of
the diagonal subgroup defines the Teichmüller geodesic flow. It shrinks the leaves of the vertical
foliation for q and stretches the leaves of the horizontal foliation for q by the same factor. It follows
from the definition that µhol is SL(2, R)-invariant.

Since SO(2, R) preserves the conformal structure we get an isometrically embedded H2 =
SL(2, R)/SO(2, R) in T (S). This is called a Teichmüller disc and we will denote the Teichmüller
disc determined by q as D(q). The Teichmüller metric restricted to D(q) is isometric to the hyper-
bolic plane of constant curvature −4.

In the flat metric defined by a quadratic differential q, a saddle connection is a geodesic segment
that connects a pair of (same or distinct) singularities of q. The ε-thin part, Q(α)ε of Q(α) is the
subset of q such that `2

q(β) 6 ε for some saddle connection β.
The points q′ in SL(2, R)(q) where `2

q′(β) 6 ε projects to a horoball in D(q). The point at infinity
of the horoball is given by the direction in which β is vertical. When two saddle connections β1
and β2 are parallel the proportion [`q′(β1) : `q′(β2)] as a function of q′ is constant. Hence, the
horoball is determined by the saddle connection with the shortest holonomy in a collection of
parallel saddle connections. Typically, the intersection Q(α)ε ∩D(q) is a complicated collection
of horoballs in D(q) with their interiors having intersections. Every point in D(q) is contained in
at most finitely many horoballs. But there need not be a uniform upper bound over D(q) for this
number. This makes it hard to get traction on the dthick-distance between the entry and exit points
of a geodesic in Q(α)ε ∩D(q), which would have been a natural analog of an excursion in this
context. Instead, we consider excursions in individual horoballs.

The excursions in horoballs in D(q) of a geodesic γ till time T are defined as follows. For a
horoball H that γ enters and exits, the complete excursion E(γ, H) is defined as the distance along
∂H between the entry and exit points. If γT ∈ H then the partial excursion E(γ, H) is defined as
the distance along ∂H between the entry point of γ and πH(γT) where πH : H → ∂H is the closest
point projection. Let H1, . . . , HN(T) denote all the horoballs that γ intersects till time T. The total
excursion E(γ, T) is defined as

E(γ, T) = ∑
k6N(T)

E(γ, Hk).

When horoballs have disjoint interiors these definitions coincide with the definitions in Section 1.1.
With intersections, the excursions E(γ, Hk) can be simultaneous and there can be several partial
excursions when γT is in the thin part.

4.2. SL(2, R) orbit closures and invariant measures. Recently, Eskin and Mirzakhani [12, Theo-
rem 1.4] showed that ergodic SL(2, R)-invariant probability measures are of Lebesgue class and
are supported on invariant complex submanifolds inQ(α). These manifolds are affine in the sense
that in the holonomy co-ordinates onQ(α) they are cut out by linear equations. Going further, Es-
kin, Mirzakhani and Mohammadi in [13, Theorem 2.1] show that all SL(2, R) orbit closures are
affine invariant submanifolds. See [12, Section 1] for more details. More recently, Filip [14] shows
that these submanifolds are in fact algebraic subvarieties.



4.3. Thin parts and regularity for invariant measures. Let µ be an ergodic SL(2, R)-invariant
probability supported on an affine invariant submanifold N ⊂ Q(α). For ε > 0, we define the ε
thin part of N as follows:

Nε = {q ∈ N such that `2
q(β) 6 ε for some saddle connection β}.

Saddle connections β1, β2 areN -parallel if they are parallel for an open subset of quadratic differ-
entials in N . See Definition 4.6 in [31].

Regularity: For ε > 0, κ > 0 small enough, let Nε,κ be the subset of q ∈ N such that there is a pair
of saddle connections β1, β2 not N -parallel such that `2

q(β1) 6 ε and `2
q(β2) 6 κ. The measure µ is

said to be regular if there exists a constant m1 > 0 such that

(4.4) µ(Nε,κ) 6 m1εκ

Masur and Smillie [23, Section 10, Claim (7)] show that the holonomy measure µhol is regular.
Avila, Matheus and Yoccoz [4, Theorem 1.2] prove a weaker version of regularity for any SL(2, R)-
invariant measure.

4.5. SL(2, R)-invariant loci, Siegel-Veech transform and volume asymptotic. For q ∈ N , let
V(q) ⊂ R2 \ {(0, 0)} be an assignment of a non-empty subset of holonomies of saddle connections
on q. We require that the assignment varies linearly under SL(2, R) action, i.e. V(gq) = gV(q)
for all g ∈ SL(2, R). As observed in [10], such an assignment satisfies conditions (B) and Cµ

mentioned in their paper for any SL(2, R)-invariant measure µ. Such an assignment V will be
called a SL(2, R)-invariant locus.

Let f be a smooth function on R2 with compact support. The Siegel-Veech transform associated
to a SL(2, R)-invariant locus V is defined as

f̂ (q) = ∑
v∈V(q)

f (v)

Veech showed that f ∈ L1(N , µ) and proved the Siegel-Veech formula

(4.6)
∫
N

f̂ dµ = c(V, µ)
∫

R2
f dx dy

where the constant c(V, µ) does not depend on f . The constant c(V, µ) is called the Siegel-Veech
constant associated to V and µ. We assume that the assignment V is such that c(V, µ) > 0.

For R > 1, the ε/R-thin part ofN corresponding to V is the set of q with some saddle connection
with holonomy in V has q-length squared less than ε/R. We denote the set by N (V)ε/R.

Let fε/R be the characteristic function of the ball B((0, 0),
√

ε/R) centered at the origin and
radius

√
ε/R. While fε/R is not smooth the Siegel-Veech formula extends to such characteristic

functions. The regularity condition 4.4 and the Siegel-Veech formula 4.6 applied to fε/R can be
used to prove the volume asymptotic

(4.7) lim
R→∞

µ(N (V)ε/R)

πε/R
= c(V, µ).

See [11, Section 7] for the main ideas.

4.8. Exponential mixing of Teichmüller flow: It is known that the Teichmüller flow is exponen-
tially mixing. For the Masur-Veech measure, the decay of correlations 3.1 for SO(2, R)-invariant
L2-functions is due to Avila-Gouëzel-Yoccoz [3] for holomorphic 1-forms and due to Avila-Resende
[5] for quadratic differentials. For general SL(2, R)-invariant measures this is due to Avila-Gouëzel
[2]. Since the functions we consider are pullbacks from Teichmüller discs they are SO(2, R)-
invariant. Hence, the decay of correlations applies to them.



5. PROOFS OF THEOREM 1.9

The simplest case: We first prove Theorem 1.9 in the case when V(q) is the set of holonomies
of all saddle connections on q. This allows us to convey the key ideas while getting into fewer
subtleties. We denote the corresponding Siegel-Veech constant simply as c(µ).

Let q ∈ Nε. Consider short saddle connections in q. If some saddle connections are parallel
we choose the one with the smallest holonomy among them. Suppose that lengths of these short
saddle connections are given by `2

q(β1) = ε/R1, `2
q(β2) = ε/R2, . . . , `2

q(βk) = ε/Rk with R1 >
R2 > · · · > Rk > 1. We define

Ψ(q) =
2
π

R1.

Next we define

Ψ(q) =
2
π
(R1 + R2 + · · ·+ Rk) .

Obviously Ψ(q) > Ψ(q) for all q. At first glance, the function Ψ above is similar to the function
Ψ defined in the context of non-uniform lattices. However, here there can be simultaneous excur-
sions. Hence, the sum over all excursions between successive entry and exit times T1 < T2 in Nε

can satisfy

∑
H:γ[T1,T2]∩H 6=∅

E(γ, H)�
∫ T2

T1
Ψ(v(γt)) dt.

This discrepancy is rectified by using the larger function Ψ. The key point is to estimate the dif-
ference in the L1 and L2 norms of the truncations of Ψ and Ψ in terms of the depth in Nε of the
truncations. This will enable us to show that the above discrepancy does not happen too often.

For times T when γT is in the thick part, it would be interesting to relate the integral over time
of Ψ to dthick(γ0, γT). In analogy with the observations preceding Theorem 1.5, we expect their
ratio to be asymptotic to a constant M > 0 that depends only on N .

Let χR denote the characteristic function of Nε/R and define the truncation

ΨR = (χ1 − χR)Ψ.

Lemma 5.1.

lim
R→∞

‖ΨR‖L1

log R
= 2εc(µ) , lim

R→∞

‖ΨR‖L2√
R

= 2

√
εc(µ)√

π
.

Proof. It follows from 4.7 that for any A > 1 there is R0 such that for all R > R0

1
A

πεc(µ)
R

< µ(Nε/R) < A
πεc(µ)

R
.

Fix r > 0 and for any positive integer k consider Nε/2(k−1)r \ Nε/2kr . If k is large enough so that
2(k−1)r > R0 then the measure of the above set satisfies

πεc(µ)
2kr

(
2r − A2

A

)
< µ

(
Nε/2(k−1)r \ Nε/2kr

)
<

πεc(µ)
2kr

(
2r A2 − 1

A

)
.

Given r, we choose A close to 1 such that

(5.2)
2r − 1

2r <
2r − A2

A
<

2r A2 − 1
A

< 2r(2r − 1).



Let n be the largest integer such that 2nr 6 R. The L1-norm of ΨR can be estimated by

2
π

n

∑
k=1

2(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
< ‖ΨR‖L1

<
2
π

n+1

∑
k=1

2krµ
(
Nε/2(k−1)r \ Nε/2kr

)
.

Let n0 be the smallest integer such that 2n0r > R0. We assume that R� R0. The summation in the
lower bound on the left satisfies

n

∑
k=0

2(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
>

n0−1

∑
k=1

2(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

n

∑
k=n0

2(k−1)r πεc(µ)
2kr

(
2r − 1

2r

)
.

The right hand side of the above inequality simplifies to
n0−1

∑
k=1

2(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

(n− n0)πεc(µ)
2r

(
2r − 1

2r

)
.

As R becomes large, the second term dominates and since (n− n0)/ log R → 1/r log 2 the above
expression simplifies to

2
22r log 2

(
2r − 1

r

)
εc(µ) < lim

R→∞

‖ΨR‖L1

log R
which as r → 0 implies

2εc(µ) 6 lim
R→∞

‖ΨR‖L1

log R
.

Similarly the summation for the upper bound on ‖ΨR‖L1 gives

2
2r log 2

(
2r − 1

r

)
εc(µ) > lim

R→∞

‖ΨR‖L1

log R

which as r → 0 implies

2εc(µ) > lim
R→∞

‖ΨR‖L1

log R

proving the lemma for the L1-norm.
In a similar way, the square of the L2-norm of ΨR can be estimated by

4
π2

n

∑
k=1

22(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
< ‖ΨR‖2

L2

<
4

π2

n+1

∑
k=1

22krµ
(
Nε/2(k−1)r \ Nε/2kr

)
.

The summation in the lower bound on the left satisfies
n

∑
k=1

22(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
>

n0−1

∑
k=1

22(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

n

∑
k=n0

22(k−1)r πεc(µ)
2kr

(
2r − 1

2r

)
.



The right hand side of the inequality above is equal to

n0−1

∑
k=1

22(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

(
2(n+1)r − 2n0r

2r − 1

)
πεc(µ)

22r

(
2r − 1

2r

)
which is greater than

n0−1

∑
k=1

22(k−1)rµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

πεc(µ)R
23r − 2n0rπεc(µ)

23r .

As R becomes large the term containing R dominates and letting r → 0 we get the lower bound

2
√

εc(µ)√
π

6 lim
R→∞

‖ΨR‖L2√
R

.

Similarly the summation in the upper bound satisfies

n+1

∑
k=1

2krµ
(
Nε/2(k−1)r \ Nε/2kr

)
<

n0−1

∑
k=1

22krµ
(
Nε/2(k−1)r \ Nε/2kr

)
+

n+1

∑
k=n0

22kr πεc(µ)
2(k−1)r (2r(2r − 1))

<
n0−1

∑
k=1

22krµ
(
Nε/2(k−1)r \ Nε/2kr

)
+ 24rRπεc(µ).

As R becomes large the term containing R dominates and letting r → 0 we get the upper bound

2
√

εc(µ)√
π

> lim
R→∞

‖ΨR‖L2√
R

.

finishing the proof for the L2-norm. �

The next lemma will need the regularity in 4.4 of µ and the following theorem of Eskin and
Masur: For any stratum Q(α) and any 0 < δ < 1 there exists constants m2(α, δ) > 0 such that the
number of saddle connections shorter than κ < 1 is bounded above by

(5.3) s(q) 6 m2

(
κ

`q(β)

)1+δ

where β is the shortest saddle connection for q. It should be noted that while Eskin and Masur state
the theorem for strata of holomorphic 1-forms it is also true for strata of quadratic differentials by
passing to the canonical double cover.

Fix the constant δ in the Eskin-Masur theorem and choose a > 1 such that a < 2/(1 + δ).
Let N ′ ⊂ Nε/R \ Nε/Ra be the subset of quadratic differentials such that apart from the shortest
saddle connection, all other short saddle connections satisfy `2

q(βi) > ε/R. We define the function
Ψ′ : N ′ → R>0 by

Ψ′(q) =
2
π
(R2 + R3 + · · ·+ Rj).

We define a slightly more complicated truncation

ΨR = Ψ(χ1 − χR) + Ψ′.

In this particular case of Theorem 1.9, the extra term Ψ′ allows us to keep track of excursions that
are concurrent with the largest excursion if it exceeds T(log T)c.



Lemma 5.4. There exists a constant B > 0 such that for R large enough

‖ΨR‖L1 6 ‖ΨR‖L1 + B.

The L2-norms satisfy
‖ΨR‖L2 6 ‖ΨR‖L2 + o(

√
R).

Proof. Consider the subset Nk,j of Nε/2k−1 \ Nε/2k of those q such that the length of the second
shortest saddle connection β2 (not N -parallel to β1) satisfies ε/2j−1 > `2

q(β2) > ε/2j where j 6 k.
By regularity 4.4,

µ(Nk,j) 6
m1ε2

2k−12j−1 .

For a quadratic differential q in Nk,j, using the bound 5.3 on the number of short saddle connec-
tions we get the pointwise bound

ΨR(q)−ΨR(q) <
j

∑
i=1

2im2

(
2k

2i−1

)(1+δ)/2

< 2m22k(1+δ)/2
j

∑
i=1

2(i−1)(1−δ)/2 < m32k(1+δ)/22j(1−δ)/2

for some constant m3 > 0. Thus∫
Nk,j

(ΨR −ΨR) dµ <
(

m32k(1+δ)/22j(1−δ)/2
)( m1ε2

2k−12j−1

)
=

4m1m3ε2

2k(1−δ)/22j(1+δ)/2
.

Summing over j = 1 to k (when 2k−1 > R it suffices to sum till the smallest number k′ such that
2k′ > R in which case the sum would be even smaller) we get∫

N
ε/2k−1\Nε/2k

(ΨR −ΨR) dµ <
m4

2k(1−δ)/2

for some constant m4 > 0. Let na be the smallest integer such that 2na > Ra. The bound for the
integral established above implies that

‖ΨR‖L1 − ‖ΨR‖L1 <
na

∑
k=1

m4

2k(1−δ)/2
.

The sum on the right hand side is bounded from above independent of na which proves the lemma
for L1 norms.

The same pointwise bound above implies∫
Nk,j

Ψ2
R dµ <

∫
Nk,j

Ψ2
R dµ + 2m32k(1+δ)/22j(1−δ)/2

∫
Nk,j

ΨR dµ + m2
32k(1+δ)2j(1−δ)µ(Nk,j)

<
∫
Nk,j

Ψ2
R dµ + 2m32k(1+δ)/22j(1−δ)/2

(
2km1ε2

2k−12j−1

)
+ m2

32k(1+δ)2j(1−δ) m1ε2

2k−12j−1

=
∫
Nk,j

Ψ2
R dµ +

1
2j(1+δ)/2

8m1m3ε22k(1+δ)/2 +
1

2jδ 4m1m2
3ε22kδ

Summing over j = 1 to k we get∫
N

ε/2k−1\Nε/2k

Ψ2
R dµ <

∫
N

ε/2k−1\Nε/2k

Ψ2
R dµ + m52k(1+δ)/2 + m62kδ.

for some constants m5, m6 > 0. Summing over k = 1 to na we get

‖ΨR‖2
L2 < ‖ΨR‖2

L2 +
m7

2
2na(1+δ)/2 +

m8

2
2naδ < ‖ΨR‖2

L2 + m7Ra(1+δ)/2 + m8Raδ



for some constants m7, m8 > 0. Recall that we had chosen a > 1 to satisfy a(1 + δ) < 2 which
implies aδ < a(1 + δ)/2 < 1. Thus, the corresponding terms on the right hand side are o(R) from
which the lemma follows for L2-norms. �

We will justify the choice of the cutoff Ra used for truncation by the following sharper lemma.
The lemma is a special case of a continuous time version of the analog of Borel-Bernstein theorem
[17, Theorem 30], [1].

Lemma 5.5. For any 1/2 < c < 1 and µ-almost every q ∈ N there is T0 depending on q such that for all
T > T0, all excursions E(γ, H) till time T satisfy

E(γ, H) < T(log T)2c

Proof. We recall some notation. For R > 1, we denote by φR the characteristic function of N2ε/R \
Nε/R. Choose A close to 1 so that estimate 5.2 is satisfied with r = 1 i.e., A > 1 is chosen close
enough to 1 such that

1
2
<

2− A2

A
<

2A2 − 1
A

< 2

The given choice of A implies that for all R large enough

‖φR‖L1 <
2πεc(µ)

R
and hence ‖φR‖2

L2 <
2πεc(µ)

R
.

Define the function n : R→ N such that for T satisfying 2k 6 T < 2k+1 the positive integers n(T)
is the largest integer such that 2n 6 k2c2k i.e., n = bk + 2c log kc. Choose a constant c1 > 1/2 for
Theorem 2.4 to satisfy c1 < c. Fixing m > 1, the upper bound in Theorem 2.4 implies that for
µ-almost every q∫ T

0
φ2n(v(γt)) dt 6 mT‖φ2n‖L1 + T1/2(log T)c1

(
‖φ2n‖2

L2 − ‖φ2n‖2
L1

)1/2

for all T large enough depending on q and m and with n(T) defined as above. By passing to a
larger T if necessary, we can ensure that the upper bounds above are also satisfied by ‖φ2n‖L1 and
‖φ2n‖2

L2 . This gives the upper bound∫ T

0
φ2n(v(γt)) dt 6 mT

2πεc(µ)
2n + T1/2(log T)c1

(
2πεc(µ)

2n

)1/2

<
B1

(log T)2c +
B2

(log T)c−c1

for some constants B1, B2 > 0. Notice that if T is large enough the right hand side is less than log 2.
But if an excursion till time satisfies E(γ, H) > T(log T)2c then γ must spend time at least log 2 in
Nε/2n−1 \ Nε/2n , which proves the lemma. �

Proof of Theorem 1.9 when V is all saddle connection holonomies. Fix c satisfying 1/2 < c < 1. Ob-
serve that Proposition 3.2 holds in this setting. That is, along µ-typical geodesics there is at most
a single excursion larger than T(log T)c till time T for T large enough. In fact, as noted in Remark
3.4, the proof of Proposition 3.3 does not need the precise asymptotic for µ(Nε/R) as R → ∞, just
that µ(Nε/R) decays as 1/R up to some multiplicative constant.

If 2k 6 T < 2k+1, then let n = n(T) = bk + c log2 kc. Replicating the exact argument in the proof
of Theorem 1.2, we use Lemma 5.1 to conclude that for µ-almost every q ∈ N

lim
T→∞

1
T log T

∫ T

0
Ψ2n(v(γt)) dt = 2εc(µ)



where γ is the Teichmüller geodesic ray with v(γ0) = q. Lemma 5.4 implies that the above limit
holds when Ψ2n is replaced by Ψ2n . By Lemma 5.5, for T large enough the largest excursion till
time T is smaller than T(log T)2c < Ta. Hence, up to an additive error whose dependence on T
will be described below

E(γ, T)−max
k6N

E(γ, Hk) �
∫ T

0
Ψ2n(v(γt)) dt.

The additive error is bounded above by the sum of the additive errors arising from individual
excursions. First, we analyze the partial excursions (if they exists).

The partial excursions correspond to configurations of saddle connections that are short in qT =
v(γT). If the qT-length squared of the small saddle connection in such a configuration is ε/R then
by 3.7, the additive error for the associated partial excursion is at most R. Let β1 be the shortest
saddle connection in qT. Let β2 be the second shortest non-parallel saddle connection. Lemma
5.5 implies that if T is large enough then `2

qT
(β1) > ε/T(log T)2c. Proposition 3.2 implies that

`2
qT
(β2) > ε/T(log T)c. Let n be the smallest positive integer such that 2n > T(log T)2c. Let m be

the smallest positive integer such that 2m > T(log T)c. The Eskin-Masur bound 5.3 implies that
the total additive error is bounded above by

m−1

∑
k=0

2k+1m2

(
2n/2

2k/2

)1+δ

=
m−1

∑
k=0

2m22k(1−δ)/22n(1+δ)/2

6 B32m(1−δ)/22n(1+δ)/2

6 4B3T(1−δ)/2(log T)c(1−δ)/2T(1+δ)/2(log T)2c(1+δ)/2

= 4B3T(log T)c(3+δ)/2

for some constant B3 > 0. For this bound to be of a lower order, c must satisfy c < 2/(3+ δ). Note
that 2/(3 + δ) > 1/2. So the condition can be satisfied.

By 3.6, the additive error from an individual complete excursion is uniform. This means that
the additive error from all complete excursions is at most linear in the number N of horoballs that
γ intersects till time T. We claim that N grows linearly in T. Let ST be the saddle connections for
q whose length squared gets shorter than ε in time less than T along the Teichmüller geodesic ray
determined by q. Then the necessary conditions on the (x, y)-coordinates of the holonomy vectors
of the saddle connections in ST are |xy| 6 ε2/2, y 6 eT and x < ε. By [1, Theorem 1.6] the number
of such vectors for a µ-almost every q is linear in T thus proving the claim. �

5.6. The general case. Let V be a SL(2, R)-invariant locus. Suppose that for q there are j short
saddle connections no two of which are N -parallel with holonomy in V(q). Index the saddle
connections β1, β2, . . . , β j in the order of increasing q-lengths and let `2

q(β1) = ε/R1, `2
q(β2) =

ε/R2, . . . , `2
q(β j) = ε/Rj. We define the functions

ΨV(q) =
2
π

R1

and

ΨV
(q) =

2
π
(R1 + R2 + · · ·+ Rj).

We can define truncations of these functions in an analogous way using the characteristic function
ofN (V)ε/R. However, the shortest saddle connection β for q may not have holonomy in V(q) and
be shorter than β1 as above. Hence, some care is required in defining the truncations. The crucial
point is that in light of Lemma 5.5, we can impose a lower bound on the length of β in defining



the truncations. As in the previous case, we use a sloppier lower bound than what Lemma 5.5
implies. This simplifies the expressions in the estimates.

Let a > 1 be such that a < 2/(1 + δ). In particular, aδ < 1. Let N (R, a) ⊂ N (V)ε \ N (V)ε/R
be the subset of those q such that the shortest saddle connection β satisfies `2

q(β) > ε/Ra. Let χR,a

denote its characteristic function of N (R, a).
Let N ′(V) ⊂ N (V)ε/R \ N (V)ε/Ra be the subset of quadratic differentials such that `2

q(β) >
ε/Ra and apart from β1 all other short saddle connections with holonomy in V(q) satisfy `2

q(βi) >
ε/R. Let (ΨV)′ : N ′(V)→ R be defined as

(ΨV)′(q) =
2
π
(R2 + · · ·+ Rj).

We define ΨV
R = ΨVχR,a and ΨV

R = ΨV
χR,a + (ΨV)′. Again, the extra term (ΨV)′ analogous to Ψ′

earlier, allows us to track excursions for saddle connections in V that happen during the largest
excursion with holonomy in V should it exceed T(log T)c.

For 2k 6 R we have the estimate

µ
(
N (V)ε/2k−1 \ N (V)ε/2k

)
− µ

(
N (R, a) ∩N (V)ε/2k−1 \ N (V)ε/2k

)
6

m1ε2

2k−1Ra .

This means here each term in the summations for lower and upper bound for L1-norm in Lemma
5.1 changes by at most 2km1ε2/2k−1Ra = 2m1ε2/Ra. Hence the summations change by at most
2nm1ε2/Ra < m6 log R/R for some constant m6 > 0. This implies

lim
R→∞

‖ΨV
R‖L1

log R
= 2εc(V, µ).

Similarly each term in the summations for lower and upper bound for L2 norms changes by at
most 22km1ε2/2k−1Ra = m1ε22k+1/Ra and hence the summations change by at most 4m1ε22n/Ra <
m7/Ra−1 for some constant m7 > 0. This implies

lim
R→∞

‖ΨV
R‖L2√
R

= 2

√
εc(V, µ)√

π
.

Lemma 5.7. There exists a constant BV such that for R large enough

‖ΨV
R‖L1 6 ‖ΨV

R‖L1 + BV .

The L2-norms satisfy

‖ΨV
R‖L2 6 ‖ΨV

R‖L2 + o(
√

R).

Proof. Consider N (R, a) ∩ N (V)ε/2k−1 \ N (V)ε/2k and let N V
k,j be its subset consisting of those q

for which (among the collection of non-parallel saddle connections with holonomies in V(q)) the
second shortest saddle connection β2 satisfies ε/2j−1 > `2

q(β2) > ε/2j where j 6 k.
We further partitionN V

k,j into two setsN V
k,j(1)∪N V

k,j(2) depending on whether the shortest sad-
dle connection for q has holonomy in V(q) or not, i.e. N V

k,j(1) is the subset of q for which β1 is the
shortest saddle connection and N V

k,j(2) is when its not. On N V
k,j(1) the integral∫

N V
k,j(1)

(
ΨV

R −ΨV
R

)
dµ

is bounded from above identical to Lemma 5.5.



Let na be the smallest integer such that 2na > Ra. For q ∈ N V
k,j(2) suppose that the shortest

saddle connection β satisfies ε/2p−1 > `2
q(β) > ε/2p where 2k 6 2p 6 2na . The measure of the

subset of such q is bounded above by
m1ε2

2p−12k−1 .

The number of short saddle connections whose q-length squared is at least ε/2i−1 is bounded
above by

m2

(
2p

2i−1

)(1+δ)/2

.

This gives the pointwise bound

ΨV
R(q)−ΨV

R(q) <
j

∑
i=1

2im2

(
2p

2i−1

)(1+δ)/2

= 2m22p(1+δ)/2
j

∑
i=1

2(i−1)(1−δ)/2 < m92p(1+δ)/22j(1−δ)/2

for some constant m9 > 0. This gives the bound∫
N V

k,j(2)

(
ΨV

R −ΨV
R

)
dµ <

na

∑
p=k

m92p(1+δ)/22j(1−δ)/2
(

m1ε2

2p−12k−1

)
<

m10

2k

for some constant m10 > 0. Thus adding up the upper bounds for the integrals on N V
k,j(1) and

N V
k,j(2) we get ∫

N V
k,j

(
ΨV

R −ΨV
R

)
dµ <

4m1m3ε2

2k(1−δ)/22j(1+δ)/2
+

m10

2k

Summing over j = 1 to k we get∫
N (R,a)∩N (V)

ε/2k−1\N (V)
ε/2k

(
ΨV

R −ΨV
R

)
dµ <

m11

2k(1−δ)/2
+

m10k
2k

for some constant m11 > 0. Summing over k = 1 to na observe that the sum of the right hand side
is bounded independent of n which proves the lemma for L1-norms.

The pointwise bound also implies∫
N V

k,j(2)

(
ΨV

R

)2
−
(

ΨV
R

)2
dµ <

na

∑
p=k

2m92p(1+δ)/22j(1−δ)/2
(

2km1ε2

2p−12k−1

)

+
na

∑
p=k

m2
92p(1+δ)2j(1−δ)

(
m1ε2

2p−12k−1

)

<
m12

2k +
m132naδ

2kδ

for some constants m12, m13 > 0. The corresponding upper bound forN V
k,j(1) is identical to Lemma

5.4 and is of the form ∫
N V

k,j(1)

(
ΨV

R

)2
−
(

ΨV
R

)2
dµ <

m142k(1+δ)/2

2j(1+δ)/2
+

m152kδ

2jδ

for some constants m14, m15 > 0. Adding up the bounds forN V
k,j(1) andN V

k,j(2) and summing over
j = 1 to k we get∫

N (R,a)∩N (V)
ε/2k−1\N (V)

ε/2k

(
ΨV

R

)2
−
(

ΨV
R

)2
dµ <

m12k
2k +

m13k2naδ

2kδ
+ m142k(1+δ)/2 + m152kδ.



and when 2k−1 > R,∫
N ′(V)∩N (V)

ε/2k−1\N (V)
ε/2k

(
ΨV

R

)2
−
(

ΨV
R

)2
dµ <

m12k
2k +

m13k2naδ

2kδ
+ m142k(1+δ)/2 + m152kδ

Summing over k = 1 to na we get that

‖ΨV
R‖2

L2 − ‖ΨV
R‖2

L2 <
m16

2
2naδ +

m17

2
2na(1+δ)/2 + m18 < m16Raδ + m17Ra(1+δ)/2 + m18

for some constants m15, m16, m17, m18 > 0. The condition on a implies that the right hand side is
o(R). Thus the lemma follows for L2-norms. �

Proof of Theorem 1.9. Fix c satisfying 1/2 < c < 1. As in the earlier case when V is all saddle
holonmies, Proposition 3.2 holds for N (V) for the same reason. It asserts that for µ-almost every
q, the Teichmüller geodesic ray corresponding to q has at most a single excursion (in horoballs
given by saddle connections with holonomies in V) till T that is larger than T(log T)c for all T
large enough depending on q. Moreover, by Lemma 5.5 the largest excursion till time T cannot
exceed T(log T)2c.

The later fact implies that up to additive error our truncation ΨV
2n satisfies∫ T

0
ΨV

2n(v(γt)) dt � E(γ, T)−max
k6NV

E(γ, Hk)

where the additive error is of order lower than T log T for the same reason as earlier. Theorem
2.4 and Lemma 5.7 conclude the proof of Theorem 1.9 in the general case, the precise argument a
replica of earlier proofs.

�
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