THE LIMIT SET OF THE HANDLEBODY SET HAS MEASURE ZERO.

VAIBHAV GADRE

ABSTRACT. This note fixes a small gap in the proof in [4] that the limit set of the handlebody set has measure
zero.

1. INTRODUCTION

For an orientable surface S of genus g, the mapping class group .#Z %% (S) is the group of orientation
preserving diffeomorphisms of S modulo isotopy. The Teichmiiller space T'(S) is the space of marked com-
plex structures on S, and is homeomorphic to an open ball in R%~6. Thurston showed that T'(S) is naturally
compactified by & .# 7 (S), the space of projective measured foilations on S. The space &2 .# .Z(S) is
homeomorphic to $%~7.

In many respects, the action of .#Z%€%(S) on the compactification W is similar to the action of a
Kleinian group on H? = H? LI CP'. There is a natural Lebesgue measure class ¢ on &.# .7 (S) that is
ergodic for this action. In a chart given by a complete train track, the natural volume form on the space of
normalized weights carried by the track is a measure in this class. For finitely generated Kleinian groups,
the Ahlfors measure conjecture, states that the limit set in CP! has either zero or full measure. See [1]. It
is natural to wonder if a similar property is true for limit sets in &?.# .%(S) of subgroups of #Z€Y(S).
A handlebody H gives an interesting subgroup of .#Z %% (S) called the handlebody group Gy. In [4],
Kerckhoff gave an elegant proof that the limit set A(Gy) of Gy has measure zero. However, it uses an earlier
result from [3] which states that almost every splitting sequence of complete train tracks gets uniformly
distorted infinitely often. Subsequently, the proof of this earlier result was discovered to be incomplete.

We do not know how to prove uniform distortion for all complete train tracks. However, we show in [2]
that uniform distortion does hold for certain expansions of complete train tracks with a single switch. As
analogs of interval exchange maps, we call such tracks complete non-classical exchanges. Just as for interval
exchange maps, Rauzy induction is well defined for such tracks, and expansions are given by iterated Rauzy
induction. See [2] for the details.

In this note, we show that the uniform distortion result from [2] is sufficient to complete the proof in [4]
that £(A(Gg)) = 0.

1.1. The limit set of the handlebody set: Let H be a handlebody with boundary surface S, an orientable
surface of genus g. The handlebody group Gy is the subgroup of .#Z €% (S) consisting of classes that have
a representative that extends over H. The limit set A(Gp) is the smallest non-empty closed invariant subset
for the action of Gy on & .# .7 (S). There is a natural Lebesgue measure class £ on &2 .# .7 (S). The main
theorem here is:

Theorem 1.2. For any handlebody H,
£(A(Gr)) =0.

2. MASUR’S DESCRIPTION OF THE LIMIT SET

Following the notation in [4], let Z be the set of isotopy classes of essential simple closed curves on S
that bound discs in H. A cut system is a collection of simple closed curves C = {C1,---,C, },C; € % which
together with the disks they bound, cut H into a 3-ball. As Masur proved in [5], a curve ¥ € £ if and only



if for every cut system C, after 7y is isotoped to have minimal intersections with C, one of the following
conditions is satisfied:

(1) For every C;, the intersection C;Ny = &.
(2) For some C;, the curve v has returning arcs to C; i.e., ¥ intersects C; and then before intersecting any
C; (which includes j = i), it returns from the same side it just left to intersect C; again.

Kerckhoff shows that after passing to A(Gpy), the above conditions persist i.e., the foliations in A(Gp)
satisfy either (1) or (2). The set of foliations which satisfy (1) is directly seen to be a measure zero set. So
it suffices to show that the subset %y of A(Gp) consisting of foliations that have returning arcs for all cut
systems, has measure zero.

3. TRAIN TRACKS

Roughly speaking, a train track on S is complete if all its complementary regions in S are ideal triangles.
Technically, the definition requires that the track be recurrent and transverse recurrent, but this will always
be the case for the tracks considered here, so we skip the details and refer the reader to [6]. For a train track
7, let P(7) denote the set of projective measured foliations carried by 7. An assignment of non-negative
weights to the branches of 7 is said to be carried by 7 if at all switches of 7, the sum of weights for incoming
branches is equal to the sum of the weights for outgoing branches. The set P(7) can be identified with
the set of normalized weights carried by 7, where the normalization is that the sum of the weights is 1.
When 7 is complete, the set P(7) gives a chart on &2 .# .7 (S). The volume form on the set of normalized
weights carried by 7 defines a measure ¢; on P(7). The transition maps for these charts are piecewise
linear invertible maps, and the derivatives of the transition maps are not bounded. This means that only
the Lebesgue measure class ¢ is defined by this process, and care is necessary while considering an infinite
sequence of train track charts.

In Theorem 1 of [4], Kerckhoff proves the following key result for train track charts:

Theorem 3.1. There is a constant 0 < K < 1 such that for any complete train track T, there is subset
P(t,H) C P(7) such that
L(P(t,H
(P(LH)
t(P(1))

and P(t,H) %y = 2.

In other words, for any complete train track 7, a definite proportion of P(7) is disjoint from %y, where
the proportion is calculated in the measure ¢;. As a particular case, the above theorem holds for complete
non-classical exchanges.

The proof in [4] then proceeds as follows: Cover &2 . .% (S) by a finite collection of train track charts.
It suffices to prove that %y has measure zero in each of these charts. For any complete train track 7 in
this collection, Theorem 3.1 states that a definite proportion of it is disjoint from %Zy. Then, 7 is split
enough number of times such that the complement is a union of stages in splitting expansions. Applying
Theorem 3.1 to each of these stages yields a definite proportion of each of them disjoint from Z%y. However,
this proportion is being measured separately in each of the stages and not using the measure /.

To take care of this issue, Kerckhoff uses the uniform distortion result from [3] (whose proof is incom-
plete). The uniform distortion result implies that up to leaving out a set of /;-measure zero, the complement
can be split into a (possibly infinite) union of uniformly distorted stages. If a stage is uniformly distorted,
the proportion that is calculated in its measure, changes by a universally bounded amount when calculated
using /.. Continuing to split what remains into uniformly distorted stages and iterating Theorem 3.1 proves
that Zy has measure zero in the initial chart P(7).

In the next section, we will state and explain the uniform distortion theorem from [2] and use that instead
in this final part of Kerckhoff’s argument.



4. UNIFORM DISTORTION AND PROOF OF THEOREM 1.2

4.1. Complete non-classical exchanges: Complete train tracks T with a single switch are called complete
non-classical exchanges. Because of the single switch condition, these are analogs of interval exchange
maps. Just as with interval exchange maps, Rauzy induction can be defined for non-classical exchanges.
Iterated Rauzy induction associates an expansion to a measured foliation in P(7). As expected, almost every
measured foliation in P(7) has an infinite expansion.

Similar to interval exchange maps, a finite Rauzy sequence giving 7’ from 7 is encoded by an integer
matrix Q with non-negative entries and determinant 1. This gives a projective linear map .7 Q from the
space P(7’) of normalized weights carried by 7’ to the space P(7) of normalized widths associated to 7. A
finite Rauzy sequence is C-uniformly distorted if the Jacobian of its projective linear map _# (.7 Q) satisfies

1 /(70K
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for all points x,y € P(7'). In [2], we prove the following theorem:

Theorem 4.2 (Uniform Distortion). There is a universal constant C > 1 that depends only on the genus
g such that for almost every projective measured foliation in P(t), its Rauzy expansion gets C-uniformly
distorted infinitely often.

C-uniformly distorted stages are important because up to a universal constant, relative probabilities re-
main unchanged. To be precise, there is a universal constant 0 < ¢ < 1 depending only on the genus
g, such that for any C-uniformly distorted stage with exchange o and associated projective linear map
7Q:P(c)— P(7), and for any measurable subset A C P(0), we have
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4.4. Proof of Theorem 1.2: Cover &2 ./ .% (S) by a finite collection of complete non-classical exchanges.
Let 7 be an exchange in this collection. By Theorem 3.1, there is a subset P(t, H) C P(7) that is disjoint from
Py and with proportion at least K. Consider the complement P(7)\ P(7,H). By Theorem 4.2, up to leaving
out a set of /;-measure zero, the complement P(7) \ P(7,H) can be covered by C-uniformly distorted stages.
Typically, there is an infinite number of these stages and we index these as 7,. By applying Theorem 3.1 to
each Ty, we find subsets P(7y,H) C P(74) disjoint from Zy and with proportion at least K in each P(7y),
where the proportion is being calculated in the measure ¢;,. However, because 7, is C-uniformly distorted,
estimate 4.3 implies that the proportion in the measure ¢; is at least cK. Then we split the complements
P(74) \ P(tq,H) into C-uniformly distorted stages, and repeat the argument to find proportion cK of these
disjoint from %y, and so on. This completes the proof of Theorem 1.2.
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