
EVERY TRANSFORMATION IS DISJOINT FROM ALMOST EVERY NON-CLASSICAL EXCHANGE.
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ABSTRACT. A natural generalization of interval exchange maps are linear involutions, first introduced by
Danthony and Nogueira [3]. Recurrent train tracks with a single switch which we call non-classical inter-
val exchanges [5], form a subclass of linear involutions without flips. They are analogs of classical interval
exchanges, and are first return maps for non-orientable measured foliations associated to quadratic differ-
entials on Riemann surfaces. We show that every transformation is disjoint from almost every irreducible
non-classical interval exchange. In the appendix, we prove that for almost every pair of quadratic differen-
tials with respect to the Masur-Veech measure, the vertical flows are disjoint.

1. INTRODUCTION

Here, we are interested in a dynamical property called disjointness for irreducible non-classical ex-
changes, a subclass of linear involutions without flips [3]. Classical interval exchange maps arise as first
return maps to intervals transverse to vertical foliations of abelian differentials on Riemann surfaces.
Analogously, non-classical exchanges are first return maps to pairs of disjoint parallel transverse inter-
vals to non-orientable foliations associated to quadratic differentials. Briefly, non-classical exchange are
invertible piecewise isometries of a pair of disjoint interval decomposed into finitely many pieces, and
satisfying some additional assumptions ([1, Definition 2.1]). Equivalently, non-classical exchanges can
be pictorially defined as recurrent train tracks with a single switch on a Riemann surface. The definitions
are presented in detail in Section 2.

Two measure preserving transformations (T, X ,µ) and (S,Y ,ν) are said to be disjoint if the product
measure µ×ν is the only invariant measure for the product transformation T ×S with marginals µ and ν.
It is a way of saying that two measure preserving transformations are different and in particular, implies
that they are not isomorphic. It was shown in [2] that every ergodic transformation is disjoint from almost
every classical exchange. Here, we prove the analogous result for non-classical exchanges under a mild
technical condition.

Theorem 1.1. Let T : X → X be µ-ergodic. Then T is disjoint with respect to almost every irreducible
non-classical exchange with an orientation preserving band.

Almost every irreducible non-classical interval exchange is uniquely ergodic [7]. See also [5] for a proof
with techniques similar to this paper. As a result of this we obtain the following corollary:

Corollary 1.2. For any uniquely ergodic non-classical exchange S1 and almost every irreducible non-
classical exchange S2 with an orientation preserving band, the product transformation S1×S2 is uniquely
ergodic.

Remark 1.3. The results above are false if there are no orientation preserving bands. As will be clear from
the definition, if a non-classical exchange x has no orientation preserving bands then x2 leaves I+ and I−
invariant, so it is not even minimal.

In classical interval exchanges, an interval I is partitioned into d subintervals, these subintervals are
permuted and re-glued preserving orientation to get an invertible, piecewise order preserving, piecewise
isometry of I . The widths of the subintervals and the permutation used for gluing completely determine
a classical interval exchange. There is a way to draw these maps pictorially:
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FIGURE 1.4. A
classical interval
exchange.

We draw the original interval I horizontally and then thicken it
vertically to get two copies I+ and I−, the top and the bottom inter-
vals. Let ε : I+t I− → I+t I− be the map that switches the intervals
i.e., ε(I+) = I− and ε(I−) = I+. Divide I+ into d subintervals with the
prescribed widths. Divide I− also into d subintervals but incorpo-
rate the permutation to decide the widths. Thus, each subinterval
of I+ pairs off by a translation with a subinterval of I− with the same
width whose placement is determined by the permutation. We join
the pair of subintervals by a band of uniform width. As an exam-
ple, Figure 1.4 shows a classical exchange with 2 bands, which is a
rotation.

The composition of the map from I+ to I− given by the vertical
flow up from I+ along the bands, followed by ε, exhibits the classical
exchange, as a map from I+ to I+. The inverse of this exchange is
then the map from I− to I− given by flowing the other way. Thus, we have an equivalent formulation of
the interval exchange as a Lebesgue measure preserving transformation on the disjoint union I+t I−.
We shall use this formulation since non-classical exchanges are defined in a similar way: the intervals
I+ and I− are partitioned into subintervals such that paired off intervals are joined by bands of uniform
width, but now we allow bands to go from I+ to I+ and also from I− to I−. The non-classical exchange as
a map from I+t I− to itself is defined by flow along the bands followed by ε. We shall call the bands that
go from I+ to I+ and from I− to I− orientation reversing, since the exchange restricted to the subintervals
given by the ends of such a band is orientation reversing.

A classical exchange is said to be irreducible, if the permutation π used in the gluing is irreducible: for
all subsets {1, · · · ,k},k < d , we have π({1, · · · ,k}) 6= {1, · · · ,k}. Pictorially, a reducible classical exchange is a
concatenation of two classical exchanges side by side for all widths of the bands, and the dynamics can
be studied by restricting to each piece. For technical reasons, the appropriate notion of irreducibility for
non-classical exchanges is subtler than the straightforward irreducibility notion above. This was done by
Boissy and Lanneau in [1]. Here, we consider only those non-classical exchanges that satisfy the Boissy
and Lanneau definition of irreducibility. The precise definitions and details will be provided in Section 2.

For a fixed permutation of a classical exchange, the set of widths normalized to have sum 1, is the stan-
dard simplex in Rd , and carries a natural Lebesgue measure. Thus, the full parameter space is a disjoint
union of simplices over irreducible permutations of d letters. For non-classical exchanges, after fixing
the combinatorics, the set of normalized widths satisfies an additional switch condition that the sum
of the widths of orientation reversing bands of I+ is equal to the sum of widths of orientation reversing
bands of I−. Thus, it has codimension 1 in the standard simplex, and inherits a natural Lebesgue mea-
sure. We shall call it the configuration space associated to the combinatorics. The full parameter space is
the disjoint union of the configuration spaces.

Following [2], we use a criteria of Hahn and Parry that two ergodic transformations on a pair of mea-
sures spaces are disjoint if the induced maps on L2-functions on the spaces are spectrally singular. Our
proof follows the proof in [2] while verifying the individual steps for non-classical exchanges.

A key step in the proof in [2] are rigidity sequences for classical exchanges. The existence of these
sequences follows from a cyclic approximation theorem of Veech [11]. We prove a similar cyclic approx-
imation theorem for non-classical exchanges, and the existence of rigidity sequences follows from it.

As an analog of Theorem 1.1, we prove disjointness of vertical flows for quadratic differentials in the
appendix. To be precise, we show:

Theorem 1.5. With respect to the Masur-Veech measure, for almost every pair of quadratic differentials
the vertical flows are disjoint.

The proof of Theorem 1.5 is simpler and relies on mixing of the Teichmüller geodesic flow.
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1.6. Outline of the paper: In Section 2, we define non-classical exchanges and explain irreducibility
for them. In Section 3, we define Rauzy induction for non-classical exchanges, and state the key result
of Boissy and Lanneau [1] for attractors of the Rauzy diagram. In Section 4, we summarize the results
from [5] for expansions of non-classical exchanges by iterated Rauzy induction. In Section 5, we state
and prove the cyclic approximation theorem for non-classical exchanges. In Section 6, we establish the
existence of rigidity sequences. In Section 7, we prove total ergodicity for almost every non-classical
exchange with an orientation preserving band present. In Section 8, we assemble the ingredients to
conclude the proof of the main theorem verbatim from [2]. In the appendix, we prove disjointness of
vertical flows for quadratic differentials.

1.7. Acknowledgements: Chaika was supported in part by NSF grant DMS-1004372. Gadre was sup-
ported by a Simons Travel Grant. The authors thank the 2011 Park City Math Institute program.

2. NON-CLASSICAL INTERVAL EXCHANGES

Let A denote an alphabet over d letters. In the definition that follows, the set A labels the bands.
A classical exchange is determined by the widths (λα),α ∈ A of the subintervals and bijections p0 and
p1 from A to the set {1, . . . ,d} as follows: In the plane, draw two vertically aligned horizontal copies I+
and I− of the interval I = [0,

∑
αλα). Call them the top interval and the bottom interval respectively.

Let ε : I+t I− → I+t I− be the map that switches the intervals i.e., ε(I+) = I− and ε(I−) = I+. Subdivide
I+ into d subintervals with widths λp−1

0 (1), . . . ,λp−1
0 (d) from left to right. Subdivide I− into d subintervals

with widths λp−1
1 (1), . . . ,λp−1

1 (d) from left to right. For each α ∈ A , join the p0(α) subinterval of I+ to the
p1(α) subinterval of I− by a band of uniform width λα. The vertical flow along the bands from I+ to I−,
followed by ε exhibits the classical exchange as a map from I+ to I+. Similarly, the inverse of the interval
exchange is realized as a map from I− to itself by flowing reverse along the bands, followed by ε. For
classical exchanges, every band has one end on I+ and the other on I−.

To define non-classical exchanges, the intervals I+ and I− are partitioned into subintervals that come
in pairs, so that they can be joined by bands with uniform width. In this case however, we require bands
that have both ends in I+, and bands that have both ends in I−. Such a band shall be called orientation
reversing because the non-classical exchange restricted to the subintervals given by the ends of the band
is orientation reversing. As before, the exchange as a map T : I+t I− → I+t I− is given by flowing along
the band away from the subinterval in question, followed by ε. The Lebesgue measure l on I+ t I− is
obviously invariant under T .

FIGURE 2.1. A non-
classical exchange on
a 4-puntured sphere.

We shall work with labelled non-classical exchanges i.e., there
is a bijection from A to the set of bands. As defined by [1], the
labeling can be thought of as given by a generalized permutation
which is a 2-1 map from the set {1, . . . ,2d} to A . Thus, π−1α de-
note the ends of the band α. A generalized permutation π is of
type (l ,m) where l +m = 2d if the set {1, . . . , l } enumerates the
subintervals of I+ from left to right and the set {l +1, . . . , l +m =
2d} enumerates the subintervals of I− from left to right. A gen-
eralized permutation defines a fixed point free involution σ of
{1, . . . ,2d} by:

π−1(π(i )) = {i ,σ(i )}.

The equivalence classes under σ can be indexed with the elements of A and correspond to the bands
in our picture. The generalized permutations encoding a non-classical exchange do not arise from a
true permutation p = p1p−1

0 i.e., it has a positive integer i with i ,σ(i )6 l and a positive integer j with
l +16 j ,σ( j ). This means that there are orientation reversing bands for I+ and I−. Following Kerckhoff,
we shall call the positions that are rightmost on the intervals I+ and I−, the critical positions. We let I (α)
be the union of subintervals at the ends of band α.
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After a horizontal isotopy collapsing I± to points, the spine of the picture can be thought of as an
abstract train track τ. In particular, if τ admits an embedding into an orientable surface S as a large
train track i.e., with complementary regions that are polygons or once-punctured polygons, then the
non-classical exchanges associated to the combinatorics, give measured foliations on S belonging to
the stratum of quadratic differentials indicated by the complementary regions. For example, Figure 2.1
shows a non-classical exchange on a 4-punctured sphere, in the principle stratum.

2.2. Irreducibility: A classical exchange is called irreducible if there is no k < d such that p−1
0 {1, · · · ,k} =

p−1
1 {1, · · · ,k}. In other words, a reducible classical exchange is a concatenation of two classical exchanges

over the subsets {1, · · · ,k} and {k +1, · · · ,d}. In terms of our picture, for all widths of the subintervals, the
intervals I± partition into two subintervals I±(1) and I±(2), and the set of bands partition into two sets
A1 and A2 such that all bands in A1 have both ends in I±(1), and all bands in A2 have both ends in I±(2).

For non-classical exchanges, a straightforward combinatorial reduction as above can be considered.
However, for technical reasons described in [1], a broader notion of reducibility becomes necessary.
From now on, we shall assume that the non-classical exchanges considered are irreducible in this sense
of Boissy and Lanneau. See the end of Section 3 for more details.

3. RAUZY INDUCTION

A key technical tool is Rauzy induction, which is simply the first return map to an appropriate pair of
subintervals I ′±. A precise definition is also given in Section 2.2 of [1]. Here, we describe it in terms of
the picture, and focus on the coding of iterations by products of elementary matrices. These matrices
describe the induced map on the parameter space.

Iterations of Rauzy induction are analogous to continued fraction expansions. In fact, when a classical
exchange has two bands, the expansion is equivalent to the continued fraction expansion of the ratio of
their widths.

FIGURE 3.1. Rauzy Induction

α0

α1

α1 α0

α′
1

λα0 = 3/7

λα1 = 1/7

λ′
α0

= 2/7

λ′
α1

= 1/7

Let T be a non-classical exchange. Let α0 and α1 be the bands in the critical positions with α0 on
I+. First, suppose that λα0 > λα1 . Then we slice as shown in Figure 3.1 till we hit I+ t I− for the first
time. The α0 band remains in its critical position, but typically a different band α′

1 moves into the other
critical position. Furthermore, the new width of α0 is λα0 −λα1 . All other widths remain unchanged.
If instead λα1 < λα0 , then we slice in the opposite direction. In either case, we get a new non-classical
exchange with combinatorics and widths as described above. This operation is called Rauzy induction.
Since Rauzy induction is represented pictorially by one band splitting another, we shall simply call it a
split. In fact, this is consistent with the notion of a split in the context of the underlying train-tracks.
Iterations of Rauzy induction are therefore called splitting sequences.

In the first instance above, let I ′ = [0,
∑
α6=α1

λα), and in the second, let I ′ = [0,
∑
α6=α0

λα). Let I+(1)
and I−(1) denote the copies of I ′ in I+ and I− respectively. Rauzy induction is then the first return map to
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I+(1)tI−(1). Let R(T ) denote the non-classical exchange induced on I+(1)tI−(1). Iteratively, let I±(n) be
the (nested) subintervals of I± to which n splits give the first return map. Let Rn(T ) be the non-classical
exchange induced on I+(n)t I−(n).

In general, not all instances of Rauzy induction are defined. To enumerate:

(1) When α0 =α1 neither of the splits are defined.
(2) When λα0 =λα1 then neither of the splits is defined.
(3) When α0 is an orientation reversing band on I+ and α1 is the only orientation reversing band on

I−, then α0 can split α1 but not the other way round i.e., only one of the splits is defined.

Case (1) is ruled out when the non-classical exchange is irreducible and Case (2) represents a set of mea-
sure zero. In fact, as shown in Section of [5], almost surely, iterations of Rauzy induction continue ad
infinitum.

3.2. Encoding expansions by matrices:

3.2.1. Description of the parameter space: Consider the vector space RA and let RA
>0 be the set of points

with non-negative coordinates. Let ∆ denote the standard (d −1)-simplex in RA with sum of the coordi-
nates equal to 1. An assignment of widths to the bands is a point in RA . Normalizing the widths so that
their sum is 1 restricts us to ∆.

To be consistent with a generalized permutation π, any assignment of widths must satisfy the switch
condition defined byπ. We denote the set of such widths normalized to sum 1 by W (π), and un-normalized
widths by R+W (π). Let A+ and A− be the set of orientation reversing bands incident on I+ and I− re-
spectively. The points in W (π) satisfy the additional constraint:∑

α∈A+
λα = ∑

α∈A−
λα.

Thus W (π) is the intersection with ∆ of a codimension 1 subspace of RA . For α ∈A+ and β ∈A−, let eαβ
be the midpoint of the edge [eα,eβ] of ∆ joining the vertices eα and eβ. The subset W (π) is the convex
hull of the points eαβ and eρ for ρ ∉A+∪A−.

There are finitely many generalized permutations π of an alphabet A over d letters, and hence finitely
many convex codimension 1 subsets of∆ that could be W (π). We call the W (π) configuration spaces. The
full parameter space is a disjoint union of the configuration spaces W (π).

3.2.2. Matrices: Let I denote the d ×d identity matrix on RA . For α,β ∈A , let Mαβ be the d ×d-matrix
with the (α,β) entry 1 and all other entries 0. After Rauzy induction, the relationship between the old
and new width data is expressed by

λ= Eλ′,
where the matrix E has the form E = I +M . In the first instance of the split, when λα0 > λα1 , the matrix
M = Mα0α1 ; in the second instance of the split, when λα1 > λα0 , the matrix M = Mα1α0 . Thus, in either
case the matrix E is an elementary matrix, in particular E ∈ SL(d ;Z). If B is any d ×d matrix then in
the instance when λα0 > λα1 , the action on B by right multiplication by E has the effect that the α1-th
column of B is replaced by the sum of theα0-th column andα1-th column of B . We phrase this as: in the
split, the α0-th column adds to the α1-th column. A similar statement holds when λα0 >λα1 .

3.3. Rauzy diagram. For non-classical exchanges, one constructs an oriented graph similar to the Rauzy
diagram for a classical exchange. However, there are some key differences in this context.

Construct an oriented graph G as follows: the nodes of the graph are generalized permutations π of
an alphabet A over d letters satisfying the conditions in the third paragraph at the beginning of Section
3. We draw an arrow from π to π′, if π′ results from splitting π. For each node π, there are at most two
arrows coming out of it. A splitting sequence gives us a directed path in G .

For irreducible classical exchanges, each connected component of the Rauzy diagram is an attractor
i.e., any node can be joined to any other node by a directed path. Each component is called a Rauzy class.
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The Rauzy diagram for non-classical exchanges is more complicated and need not have such strong
recurrence properties. See the examples in the Appendix of [1] or see Section 10 of [4]. In particular,
the straightforward definition of reducibility does not work from the point of view of the Rauzy diagram:
there are generalized permutations that are not obviously reducible that can split to an obviously re-
ducible one with positive probability. Hence, the broader definition of reducibility defined by Boissy and
Lanneau [1], becomes necessary. In [1], they prove that

Theorem 3.4 ([1] Theorem C ). Let Gi r r be the subset of nodes of G corresponding to the strongly irreducible
generalized permutations. Then Gi r r is closed under forward iterations of Rauzy induction. Moreover, each
connected component of Gi r r is strongly connected i.e., any node π in a connected component of Gi r r can
be connected to any other node π′ in the same component of Gi r r by a sequence of splits.

For the rest of the paper, the generalized permutations considered will be irreducible in the stronger
sense, and in a single attractor G of G .

4. DYNAMICS

In this section, we analyze the expansion by splitting sequences on the parameter space.

4.0.1. Preliminary notation: Given a matrix A with non-negative entries, we define the projectivization
T A as a map from ∆ to itself by

PA(y) = Ay

|Ay| .
where if y = (y1, y2, · · · , yd ) in coordinates then |y| =∑ |yi |. This shall be the norm used throughout. The
norm is additive on Rd

>0, i.e. for y,y′ in Rd
>0, |y+y′| = |y|+ |y′|.

4.1. Iterations of Rauzy induction: Let π0 ∈G . The non-classical exchanges with generalized permuta-
tion π0 are points in the configuration space W (π0). Let x = (λα) ∈W (π0). As shown in [5], almost every
x has an infinite expansion. An infinite expansion determines an infinite directed path in G .

A finite directed path  :π0 →π1 → . . . →πn in G shall be called a stage in the expansion. Let Ei denote
the elementary matrix associated to the split πi−1 → πi . The image of W (πi ) under the projective linear
map PEi lies in W (πi−1). The matrix Q  associated to the stage is given by

Q  = E1E2 . . .En .

The set PQ  (W (πn)) is the set of all x ∈W (π0) whose expansion begins with π0 →π1 →···→πn .
In the expansion of x, whenever it is necessary to emphasize the dependence on x, we shall denote the

nodes by πx,i , the configuration spaces defined by πx,i by W (πx,i ), and the elementary matrices associ-
ated to πx,i−1 → πx,i by Ex,i . Thus, given a stage  : π0 → π1 → . . . → πn , the set PQ  (W (πn)) is precisely
the set of all x ∈W (π0) for which πx,i =πi for all i 6 n.

The actual (or un-normalized) widths λ(n) are given by

x =Q λ
(n).

The projectivization x(n) = λ(n)/|λ(n)| belongs to W (πn). Recall that Rn(x) is the non-classical exchange
on subintervals I±(n) induced by x. The widths of the bands in Rn(x) are exactly λ(n). Let I (α,n) denote
the union of subintervals of I±(n) given by the ends of band α.

For a point t ∈ I+(n)tI−(n), let mn(t ) be the first return time to I+(n)tI−(n) under the transformation
x. It follows immediately that mn(t ) is constant on each I (α,n). So for any t ∈ I (α,n), we will denote the
return time by mn(α). For t ∈ I (α,n), consider the finite set

Sα(n) = {t ,x(t ),x2(t ), · · · ,xmn−1(t )}.

Lemma 4.2. The (β,α) entry of Qn counts the number of points in Sα(n) that lie in I (β). In other words,
the (β,α) entry of Qn counts the number of times a point in I (α,n) visits I (β) under the exchange x, before
the first return to I+(n)t I−(n).
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Proof. The proof proceeds by induction. For n = 1, if α does not split some other band in x →R(x), then
m1(α) = 1. In the same situation, all (β,α) entries of Q1 are zero and the (α,α) entry is 1, verifying the
lemma. If α splits β in x →R(x), then m1(α) = 2 on I (α,1) and in fact #Sα(1)∩ I (β) = 1 which is the same
as the (β,α) entry of Q1, again verifying the lemma.

Now suppose that the lemma is true for n−1. If α does not split some other band in Rn−1(x) →Rn(x)
then mn(α) = mn−1(α) and in fact #Sα(n)∩I (β) = #Sα(n−1)∩I (β) for all β. By induction #Sα(n−1)∩I (β)
is the same as the (β,α) entry of Qn−1, which is the same as the (β,α) entry of Qn , verifying the lemma in
this case.

On the other hand, if α splits β in Rn−1(x) → Rn(x), then mn(α) = mn−1(α)+mn−1(β) and in fact
#Sα(n)∩ I (γ) = #Sα(n −1)∩ I (γ)+#Sβ(n −1)∩ I (γ). By induction, the right hand side is the sum of the
(γ,α) and (γ,β) entry of Qn−1 which is the same as (γ,α) entry of Qn . So the lemma is verified in this case
too. �

The sets PQn(W (πn)) form a nested sequence in W (π0), all containing x. Let

C (x) =⋂
n
PQx,n(W (πn)).

Letµ be a probability measure on the disjoint union I+tI− invariant under the non-classical exchange x.
Let (λµα) be the widths assigned byµ to the bands. [5, Proposition 4.2] shows that if x is minimal i.e., orbits
of x are dense, then the map µ→ (λµα) is a linear homeomorphism from the set of x-invariant probability
measures onto the set C (x).

Let m be the Lebesgue measure on each configuration space induced by the (d −2)-volume form on
it as a codimension 1 submanifold of ∆, normalized so that the total volume of the configuration space
is 1.

To estimate the measure of subsets ofPQn(W (πn)), we compare the push-forward (PQn)∗(m) measure
from W (πn) to W (π0) to the measure m on W (π0). The Radon-Nikodym derivative of m with respect to
(PQn)∗(m) is the Jacobian J (PQn) of the restriction PQn : W (πn) →W (π0). Integrating J (PQn) over the
subset gives its measure. Thus, to give quantitative estimates, one needs to understand J (PQn) better.

Suppose πn is the same as π0 at some stage  : π0 → ··· → πn = π0, and suppose κ is a finite splitting
sequence starting fromπ0. If J (PQ  ) is roughly the same at all points, then the relative probability that κ
follows  is roughly equal to the probability that an expansion starts with κ. We make this precise below:

Definition 4.3. Suppose  :π0 →π1 → . . . →πn is a stage and Q  the associated matrix. For C > 1, we say
that  is C -uniformly distorted if for all y,y′ ∈W (πn)

1

C
6

J (PQ  )(y)

J (PQ  )(y′)
6C .

Remark 4.4. The matrix Q  is C -distributed if for all α,β ∈A , the columns of Q  satisfy

1

C
< |Q  (α)|

|Q  (β)| <C .

As shown by the analysis of J (PQ  ) in Section 8 of [5], when the columns of Q  are C 1/(d−1)-distributed
then  is C -uniformly distorted. The relative probability statement then becomes:

Lemma 4.5. Suppose  :π0 →···→πn =π0 is C -distributed, and letκ be a finite splitting sequence starting
from π0. Let  ∗κ denote the sequence  followed by κ. Then, there exists constant c > 1 that depends only
on (C ,d) such that

1

c
m (PQκ(W (πκ))) < m

(
PQ ∗κ(W (π ∗κ))

)
m

(
PQ  (W (π  ))

) < cm (PQκ(W (πκ))) .
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Notation 4.6. At any stage  , we shall say that two quantities A1 ³ A2 if up to a multiplicative constant
that depends only on (C ,d) and is independent of  they are the same. With this notation:

m
(
PQ ∗κ(W (π ∗κ))

)
m

(
PQ  (W (π  ))

) ³ m (PQκ(W (πκ))) .

The main technical theorem is [5, Theorem 1.2] which we reproduce below:

Theorem 4.7 (Uniform Distortion). Let  : π0 → π1 → . . . → πn be a stage. There exists a constant C > 1,
independent of  , such that for almost every x ∈ PQ  (W (πn)), there is some m > n, depending on x, such
that  followed by πn → ··· → πx,m is C -uniformly distorted. Additionally, πx,m can be arranged to be the
same as π0.

Given Remark 4.4, to prove Theorem 4.7 one in fact shows that there is some m > n such that  followed
by πn →···→πx,m is C -distributed.

A consequence of Theorem 4.7 is [5, Theorem 11.1] which we reproduce below:

Theorem 4.8 (Strong Normality). In almost every expansion, for any finite sequence  starting from π0,
there are infinitely many instances in which  immediately follows a C -distributed stage.

5. CYCLIC APPROXIMATION

Let ` denotes the Lebesgue measure on I+t I−. Let π ∈G . Let x ∈W (π) be a non-classical exchange.

Theorem 5.1 (Cyclic approximation). For almost every set of widths x ∈W (π), and any δ> 0 small, there
is a positive integers N ,n, a band α ∈A , such that for some J = I (α,n)

(1) J ∩xk (J ) =∅ for all 1 < k < N .
(2) x is linear on the set xk (J ) for all 1 < k < N .
(3)

`

(
N−1⋃
k=0

xk (J )

)
> 1−δ.

(4) `(J ∩xN (J )) > (1−δ)`(J ).

Moreover, α is orientation preserving in πn .

Proof. We simply check that the individual steps in the original proof by Veech [11, Theorem 1.4] hold
for non-classical exchanges.

Step 1: As a consequence of Theorem 4.7, there is a C -distributed stage  : π→ π1 → ··· → πm = π′ such
that the matrix Q  is positive and some band α is orientation preserving in π′.

Step 2: Given a constant 0 < ξ< 1, let W (π′,α,ξ) be the subset of W (π′) satisfying λα > (1−ξ)|λ|. Because
α is orientation preserving in π′, the subset W (π′,α,ξ) is non-empty and m(W (π′,α,ξ))/m(W (π′)) ³
ξd−2. Consider W = PQ  (W (π′,α,ξ)). By Strong Normality, for almost every x ∈ W (π) there is a finite
splitting sequence κ : π→ ··· → π starting and terminating in π and depending on x such that PQκ(W )
contains x. Hence, the expansion of x begins with the concatenation κ∗  i.e., κ followed by  . Thus,
Qκ∗  =QκQ  .

Step 3: Let n be the length as a directed path in G of the splitting sequence κ∗  . Corresponding to
the sequence κ∗  , let y = Rn(x) be the exchange induced on corresponding subintervals I±(n) of I±.
Assuming α is orientation preserving, the widths for y satisfy

λ(n)
α > (1−ξ)|λ(n)|.

In other words,
`(I (α,n)) > (1−ξ)`(I+(n)t I−(n)).
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Recall from Lemma 4.2 that the (β,α) entry of the matrix Qκ∗  counts the number of times a point in
I (α,n) visits I (β) under the exchange x, before returning to I+(n)tI−(n). Hence, for 1 < k < q = |Qκ∗  (α)|,
we have I (α,n)∩xk (I (α,n)) =∅. Finally, xq (I (α,n)) ⊂ I+(n)t I−(n). This implies

`
(
I (α,n)∩xq (I (α,n))

)> (1−2ξ)` (I+(n)t I−(n)) .

Step 4: For a positive d ×d matrix Q, let

ν(Q) = max
16i , j ,k6d

Qi j

Qi k
.

Recalling inequalities 3.1 and 3.2 from [11], we get

|Qκ∗  (β)| 6 qν(Qκ∗  ).

ν(Qκ∗  ) 6 ν(Q  ).

Let (λγ) = x be the original widths. Assuming α is orientation preserving, we use λ=Qκ∗ λ(n) to get

|λ|−λ(n)
α q = ∑

β 6=α
λ(n)
β

|Qκ∗  (β)|

6 qν(Qκ∗  )
∑
β 6=α

λ(n)
β

< qν(Qκ∗  )
ξ

1−ξλ
(n)
α

< ν(Qκ∗  )
ξ

1−ξ |λ|.
Rearranging the inequality above, we get

`

(
q−1⋃
k=0

xk (I (α,n))

)
>

(
1−ν(Q ∗κ)

ξ

1−ξ
)
|λ|.

Step 5: Finally, choose ξ > 0 small enough such that 2ξ < δ and ν(Qκ∗  )(δ/1−δ) < ξ. Then, properties
(1)-(4) in the theorem hold with N = q and J = I (α,n). �

Remark 5.2. A main point in the proof above is that α is orientation preserving in π′ = Rn(π). This
implies that J = I (α,n) has a component each in I±. This shall turn out to be relevant later in Section 7.

6. RIGIDITY SEQUENCES

Following [2], a positive integer n is a ξ-rigidity time for a non-classical exchange x ∈W (π) if∫
I+tI−

|xn(t )− t |d`< ξ

In particular, a consequence of Theorem 5.1 is that for every ξ> 0 and for almost every x ∈W (π) there is
a ξ-rigidity time.

A sequence of positive integers n1,n2, · · · is a rigidity sequence for a non-classical exchange x if∫
I+tI−

|xni (t )− t |d`→ 0

For a sequence of natural numbers A, let a(n) be the cardinality of A ∩ {1, · · · ,n}. The sequence A is
density 1 if lim a(n)/n = 1.

To prove disjointness it suffices to show [2, Remark 9] that

(1) Any sequence of density 1 contains a rigidity sequence for almost every non-classical exchange.
(2) For any α we have m({x ∈ W(π) : e2πiα is an eigenvalue of x}) = 0.
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Theorem 6.1. Let A be a sequence of natural numbers with density 1. Almost every non-classical exchange
x ∈W (π) has a rigidity sequence in A.

The above theorem follows from:

Theorem 6.2. For every ξ> 0 there exists d(ξ) < 1 such that any sequence of density d(ξ) contains a rigidity
sequence for a set of non-classical exchange of measure 1−ξ.

As a corollary to Theorem 6.2, we get

Corollary 6.3. For any irrational α we have m({x ∈ W(π) : e2πiα is an eigenvalue of x}) = 0.

Corollary 6.3. Following exactly the proof of [2, Corollary 5], we combine Theorem 6.2 with the total
ergodicity of almost every non-classical exchange (Theorem 7.1).

Since almost every non-classical exchange is totally ergodic, α cannot be rational. If e2πiα is an eigen-
value for some irrationalα then rotation byα is a factor of x. Then rigidity sequences of x are also rigidity
sequences for the rotation. For any e > 0, it is possible to construct a sequence of density at least 1− e
which contains no rigidity sequence for rotation by α. See the discussion in [2] following Corollary 5.
This implies that for any e > 0, `

(
{x :α is eigenvalue of x}

)< e finishing the proof. �

Theorem 6.2. The proof of Theorem 6.2 is identical to the proof of [2, Corollary 3] except that the follow-
ing facts need to be verified for non-classical exchanges. This is done using results from [5].

Fact 1: At any stage  in the expansion (with generalized permutation π′), there are constants K ,C > 1
and probability 0 < p < 1 independent of  such that there are future stages κr that are C -distributed
with maxα |Qκr (α)| < K maxα |Q  (α)| and∑

m
(
PQκr (W (π))

)
> pm

(
PQ  (W (π′)

)
This is [5, Proposition 10.21]. Let Pi = [K i ,K i+1]. A consequence of the previous fact is

Lemma 6.4. For almost every x ∈ W (π) the set of i for which for which some C -distributed stage satisfies
maxβ∈A |Q(β)| ∈ Pi has positive density i.e., [2, Lemma 6] holds for non-classical exchanges.

Lemma 6.4. We define a random variable Fk as follows: Let k and k+1 be the k-th and (k + 1)-th in-
stances of C -distribution in the expansion of x with corresponding matrices Qk and Qk+1. If

maxβ∈A |Qk+1(β)|
maxβ∈A |Qk (β)| ∈ Pi

then set Fk (x) = i . Using Fact 1, we see that Fk is at worst exponentially distributed. More precisely, for
a> 2, we have Prob(Fk = 1) = `(x : Fk (x) = a)6 (1−p)a−1.

Also by Fact 1 we have an estimate on conditional probabilities. That is, for each (a1, ..., an) ∈ Nn we
have that

Prob(Fn+1 = a|(F1, ...,Fn) = (a1, ..., an))6 (1−p)a−1.

It follows that for almost every x we have

lim
n→∞

1

n

n∑
k=1

Fk (x)6 Prob(Fk = 1)+ ∑
a>2

a(1−p)a−1 <∞

It follows from the limit above that the set of i such that the C -distributed stages satisfy maxβ∈A |Q(β)| ∈
Pi has positive density. �
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Fact 2: The probability that a sequence κ follows a C -distributed stage  is roughly the same as the prob-
ability that a sequence begins with κ. Suppose κ terminates in the generalized permutation π′. Quanti-
tatively, what is needed in the proof in [2] is an estimate of the form:

m
(
PQκ(W (π′))

)< m
(
PQ ∗κ(W (π′))

)
m

(
PQ  (W (π))

) C d−1

which simply follows from Remark 4.4.

Fact 3: Let R > 1 be a real number. We need an estimate for the number of maximal columns with
norm R i.e., columns Q(α) such that |Q(α)| = maxβ∈A |Q(β)| = R over the set of all possible C -distributed
stages in the expansions of non-classical exchanges. A simple count shows that the number of vectors
v for which |v | ³ R is O(Rd−1). However, for non-classical exchanges, there is a restriction coming from
the fact that the projective linear maps must map configuration spaces to configuration spaces. Thus,
not every v with |v | ³ R can be a maximal column Q(α). [5, Lemma 12.2] implies that for C -distributed
stages, the contraction of PQ is uniform in all directions. To be precise, [5, Lemma 12.2] implies that the
projectivization PQ(α) of a maximal column Q(α) has to lie in a C 2/Rd -neighborhood of W (π) in∆. This
gives the estimate for the number of maximal columns with R to be O(Rd−2).

Fact 4: In the same situation as Fact 3, we want to estimate the m-measure of the set of non-classical
exchanges given by a C -distributed stage i.e., for a C -distributed stage terminating in a generalized per-
mutation π′ we want to estimate m(PQ(W (π′)) in terms of R. In [5, Section 8], we analyze the Jacobian
of the restriction to configuration spaces of a projective linear map PQ. Precisely, we show that

J (PQ)(y) = 1

a|Qy|d−1

where a > 0 is a constant that depends on the stage. [5, Lemma 12.2] then implies that for any C -
distributed stage, the constant a has a lower bound that depends only on C . Consequently,

m(PQ(W (π′)) ³O(R−(d−1))

Facts 3 and 4 together imply that the set of x for which there is a stage κ in the Rauzy expansion of x
such that maxβ∈A |Qκ(β)| ³ R is at most O(R−1) i.e., [2, Lemma 10] holds for non-classical exchanges.

Along with the estimate m(W (π,α,ξ)) ³ ξd−2 for the set W (π,α,ξ) defined in the proof of Theorem 5.1,
the above lemma implies that m(x ∈W (π) : R is expected ξ-rigidity time for x) ³ ξd−2/R.

Fact 5: From Lemma 6.4 and Fact 2 it follows that the set of i for which x has a ξ-rigidity time with fixed
previous induction steps in [K i ,K i+1] has measure at least cξd−2.

The estimates at the end of Facts 4 and 5 prove Theorem 6.2 by the exact argument in the proof of [2,
Corollary 3]. The key point is that the estimates establish that there is a constant C ′ independent of ξ
so that among the set of nonclassical exchanges that have a ξ rigidity time between K i and K i+1, for the
special reason given above, the set of those for which this time is in a set of density δ in [K i ,K i+1] has
proportion at most C ′δ. This follows from Fact 3 which limits how many C -distributed matrices can have
the largest column sum R for a single R. �

7. TOTAL ERGODICITY

A measure preserving transformation is said to be totally ergodic if every forward iterate of it is ergodic.
To finish the proof of Theorem 1.1, we show:

Theorem 7.1. If π has an orientation preserving band then almost every x in W (π) is totally ergodic.

We first give a sufficient condition for total ergodicity.

Proposition 7.2. A non-classical exchange x is totally ergodic with respect to ` if for any prime p, there are
arbitrarily good cyclic approximations of height n coprime to p.
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Lemma 7.3. Suppose x is ergodic but not totally ergodic. There is a prime p such that xp is not ergodic.

Lemma 7.3. Suppose xk is not ergodic. By the ergodic decomposition theorem, there exists a xk invariant
set S ⊂ I+tI− with `(S) > 0 such that S is the support of an ergodic measureµ of xk , and any other ergodic
measure of xk assigns measure 0 to S. Any translate xnS is xk invariant and carries the xk ergodic measure
(xn)∗µ. Hence, by the decomposition theorem, either xnS and S coincide or their intersection is empty
i.e. either xnS ∩S = S or xnS ∩S =∅. Let m = min{n : `(xnS ∩S) > 0}. Then xmS = S. If p|m then the set

B = S ∪xm/p S ∪x2(m/p)S ∪·· ·∪x(p−1)(m/p)S

is xp invariant and does not have full measure. Hence, xp is not ergodic. �

Before the formal proof of Proposition 7.2 we state the idea, which we make precise by using Lusin’s
Theorem. If x is ergodic but not totally ergodic then it has a factor F :Z/pZ→Z/pZ by F (i ) = i +1 given
by identifying points with the ergodic component of xp they are in. By assumption there exist ni such
that p - ni and xni are arbitrarily close to the identity. Because xni is arbitrarily close to the identity and
F is a factor F ni is close to the identity too. But F ni = F t where t ≡ ni mod p. Because g cd(p,ni ) = 1 we
have F ni is not close to the identity.

Proposition 7.2. Let B be a xp -invariant set that is the support of an ergodic measure as above. Then the
translates {B ,xB ,x2B , · · · ,xp−1B} are all disjoint.

By Lusin’s Theorem, we may assume that B contains all but a very small proportion, say 1/u for very
large u, of a subinterval V of I+tI− of size δ1. Choose δ for the cyclic approximation to be less than δ1/p.
By assumption, we may chose the height n of a cyclic approximation to x to be such that gcd(n, p) = 1
and n > 3/δ. For 06 j < n, call the sets x j J as levels of the approximation. By the choice of δ, there is
some level xs J such that at least one of the two subintervals of xs J , say xs J+ is in V . Consider the subset

J ′+ = p∩
i=0

x−i n(J+).

These are points in J+ whose first pn iterates of x lie in the corresponding level mod n. By the approxi-
mation theorem, we have the estimate:

`(J ′+) > `(J+)(1−pδ) > `(J+)(1−δ1)

Notice that if t ∈ J ′+ then the sequence (xi p )t for 0 6 i < n hits each level exactly once. So we get the
estimate:

`

(
p−1∩
j=0

x− j n(xs J+∩B)

)
> `(J+)(1−δ1 −1/u).

This implies that
n−1∪
i=0

xpi
(

p−1∩
j=1

x− j n(xs J+∩B)

)
is most of the set

n−1∪
i=0

x−i (J+). By xp invariance of B , the

former is also a subset of B . Since

`

(
n−1∪
i=0

x− j (J+)

)
> 1/2−δ,

we must have `(B) > 1/2. If `(B) 6= 1 then disjointness of the translates of B implies `(B) = 1/2. This
means that p = 2 and xB = B c = I+t I− \ B . This contradicts the fact that the subset of B constructed

above contains most of
n−1∪
i=0

x−i (J+). Hence, B has full measure, and xp is ergodic with respect to `. �

It remains to show the existence of arbitrarily good cyclic approximations with heights coprime to p.
This proposition is the only result that requires the hypothesis that π has orientation preserving bands.

Proposition 7.4. Suppose π has an orientation preserving band. For any δ> 0 and prime p, the set

{x ∈W (π) : ∃n with gcd(n, p) = 1 s.t. x has a height n cyclic approximation with constant δ}

has full measure.

12



We first state and prove a well known fact for completeness.

Lemma 7.5. Let Q be a matrix in SL(d ,Z) with column norms q1, q2, · · · , qd . Then, gcd(q1, q2, ..., qd ) = 1.

Lemma 7.5. Let A be the d×d matrix with all entries 1. Every entry of AQ is divisible by gcd(q1, q2, ..., qd ).
Therefore, for all matrices B ∈ SL(d ,Z) the matrix AQB has every entry divisible by gcd(q1, q2, ..., qd ). In
particular, this is true for B =Q−1. However AQQ−1 = A. Therefore, gcd(q1, q2, ..., qd ) = 1. �

Lemma 7.6. Let p be a prime and suppose π has orientation preserving bands. Then, there is a constant
C > 1 such that for almost every x ∈ W (π) there are infinitely many {nk }∞k=1 ⊂ N such that Qx,nk is C -
distributed and there is an orientation preserving band αk for which |Qx,nk (αk )| is coprime to p.

Claim 7.7. Let π → π1 → π2 · · · be any infinite expansion. With the hypothesis that π has orientation
preserving bands, for every n ∈ N either some orientation preserving band in πn has column norm in Qn

coprime to p or if column norms in Qn of all orientation preserving bands in πn are divisible by p then
there exists orientation reversing bands β1,β2 on opposite sides i.e., on I+ and I− respectively, such that
|Qn(β1)| and |Qn(β2)| have remainders r1 and r2 such that r1 + r2 6= 0 mod p.

Proof. When n = 0, all column norms are 1, so the claim is true. Suppose the claim is true for n.
First, suppose that |Qn(α)| is coprime to p for some orientation preserving band α in πn . There re-

mains an orientation preserving band with column norm in Qn+1 coprime to p unless α is the only
orientation preserving band in πn with |Qn(α)| 6= 0 mod p and α splits some orientation reversing band
β in the subsequent split πn → πn+1. Lets suppose α splits the orientation reversing band β and let
r2 = |Qn(β)| mod p. Then |Qn+1(α)| = r1 + r2 mod p. Consider an orientation reversing band γ on the
opposite side and let r3 = |Qn+1(γ)| mod p. Then r3 + r2 = 0 mod p and r3 + r1 + r2 = 0 mod p cannot be
simultaneously true. Thus, at least one of the pairs (γ,α) and (γ,β) satisfy the remainder condition of the
claim.

Now suppose that all orientation preserving bands in πn have column norms divisible by p, and there
are orientation reversing bands β1 and β2 on I+ and I− respectively such that |Qn(β1)| and |Qn(β2)| have
remainders r1 and r2 satisfying r1+r2 6= 0 mod p. Without loss of generality, we may assume that at least
one of β1 or β2, say β1, is in a critical position. Let γ be the band in the other critical position. If γ splits
β1 then the β1-column is unchanged, so assume that β1 splits γ. If γ is orientation preserving then β1

remains orientation reversing on I+ and |Qn+1(β1)| = r1 mod p. So the pair (β1,β2) continues to satisfy
the remainder condition. If γ is orientation reversing then either |Qn+1(β1)| 6= 0 mod p in which case we
have β1 as an orientation preserving band with column norm coprime to p, or |Qn(γ)| = −r1 mod p. In
the later case, there must exist an orientation reversing band β3 on I+, and suppose |Qn+1(β3)| = r3 mod
p. Then r3 + r2 = 0 mod p and r3 − r1 = 0 mod p cannot be simultaneously true. Thus, at least one of the
pairs (β3,β2) and (β3,γ) satisfies the remainder condition.

The claim follows by induction. �

Now restrict to π and consider an assignment of remainders mod p to all bands such the remainders
assigned to orientation preserving bands are zero and there is a pair (β1,β2) of orientation reversing
bands on I+ and I− respectively with remainders (r1,r2) such that r1 + r2 6= 0 mod p. Starting from such
an assignment, we can derive an assignment of remainders in all stages obtained from π.

Claim 7.8. Given an initial assignment of remainders mod p to bands in π as described above, there is a
splitting sequence from π such that in the final stage there is an orientation preserving band with nonzero
remainder mod p.

Proof. By [5, Proposition 10.1], there is a shortest splitting sequence that brings one of β1 or β2 to the
critical position on the corresponding interval I+ or I−. Without loss of generality, say β1 is brought to
the critical position on I+. Then the β1 and β2 remainders remain unchanged during this sequence. We
may also assume that the conclusion of the claim is not satisfied during this sequence. After β1 is in the
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critical position on I+ split it by every band to the left of β2 on I− till β2 appears in the critical position on
I−. Again, the β1 and β2 remainders remain unchanged, and we might assume that the conclusion of the
claim is not satisfied during this sequence. But then, in the next split either β1 or β2 becomes orientation
preserving and has the non-zero remainder r1 + r2 mod p, proving the claim. �

Lemma 7.6. For each assignment σ as above of remainders to bands in π, Claim 7.8 gives a splitting
sequence (σ) from π that produces an orientation preserving band with non-zero remainder mod p.
Since the number of assignments σ is finite (bounded above by pd ), there is a bound on the lengths of
the sequences (σ).

By Theorem 4.7, there is a constant C > 1 such that for almost every x ∈W (π) there are infinitely many
{mk }∞k=1 such that Qx,mk is C -distributed and πx,mk = π. If the column norms in Qx,mk of all orientation
preserving bands in π are divisible by p then consider the remainders mod p of the column norms of all
bands. Call this assignmentσk . As established earlier, there must be a pair of orientation reversing bands
(β1,β2) with remainders (r1,r2) such that r1 + r2 6= mod p. In this case, consider π→ ···πx,mk followed
by (σk ). Since the length of (σk ) is bounded above independent of x and mk , there is a lower bound
independent of x and mk on the relative probability that (σk ) follows π→ ··· → πx,mk . For the same
reason, there is also an upper bound independent of x and mk on the distortion introduced by (σk ).

By Strong Normality (Theorem 4.8), for almost every x, there is a subsequence of {mk }, call it {nk },
such that either the column norm in Qx,nk of some orientation preserving band is coprime to p or the
sequence (σk ) followsπ→···→πx,nk in the expansion for x, resulting in an orientation preserving band
with column norm coprime to p. Given that (σk ) introduces a distortion bounded above independently
of x and nk , we can choose a bigger constant C such that all of these stages are C -distributed. This proves
Lemma 7.6. �

Proposition 7.4. For almost every x, there infinitely many {nk }∞k=1 ⊂ N such that the matrix Qx,nk is C -
distributed. By Lemmas 7.5 and 7.6, there is αk orientation preserving in πx,nk such that |Qx,nk (αk )| is
coprime to p. Let Xk denote the set of x such that Rnk (x) ∈W (π,αk ,δ/C ). From the proof of Theorem 5.1,
the exchanges x ∈ Xk have a cyclic approximation of height |Qx,nk (αk )| with constant δ.

Let µ be the minimum over α ∈A of m(W (π,α,δ/C )). By Lemma 4.5, up to a universal multiplicative
constant, we have m(Xk )> µ. Thus,

∑
k m(Xk ) = ∞. Moreover, since the sets Xk are C -distributed we

have m(Xk ∩ XL) 6 C m(Xk )m(Xl ), and so almost every x belongs to some Xk , and in fact, belongs to
infinitely many Xk . �

Theorem 7.1. By Proposition 7.2 and the fact that a countable intersection of full measure sets has full
measure it suffices to prove Proposition 7.4. �

Remark 7.9. Starting from a generalized permutation with all bands orientation reversing, in all later
stages, the column norms are even for all orientation preserving bands and odd for all orientation re-
versing bands. Thus, all cyclic approximations have even height. This is in line with the fact that x2

leaves I+ and I− each invariant. In fact, Proposition 7.2 shows that these are the only invariant subsets
for x2, and also that all odd iterates of x are ergodic.

8. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 now follows verbatim as in [2]. The results of the preceding sections establish
the necessary facts for non-classical exchanges. In particular, we use the criterion for generic disjointness
[2, Remark 9]. It suffices to show that

(1) For any α almost every x does not have α as an eigenvalue.
(2) For any A ⊂Nwith density 1 almost every x has a rigidity sequence in A.

Corollary 6.3 and Theorem 7.1 establish condition 1. Theorem 6.2 establishes condition 2.
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APPENDIX

In this appendix, we prove disjointness of vertical flows for quadratic differentials, namely Theorem
1.5. Theorem 1.5 is easier to prove than Theorem 1.1 by using the mixing of Teichmüller geodesic flow,
namely Theorem .1.

We first set out some preliminaries. A quadratic differential q on a Riemann surface X defines by
contour integration a singular flat metric on X exhibiting it as a half-translation surface: the surface X
carries a set of charts to C= R2 with transition functions of the form z →±z +a. We restrict to unit area
quadratic differentials i.e., the area of the surface with the induced flat metric is 1. Conversely, a singular
flat metric on a surface S with the above properties defines not only a conformal structure X on it but also
a quadratic differential on X . In summary, these turn out to be equivalent notions. We will denote the
half-translation surface associated to q by X (q). We denote the space of unit area quadratic differentials
by Q. The group SL(2,R) has a natural action on Q as affine transformations of X (q). The action of the
diagonal part

g t =
[

e t 0
0 e−t

]
is called Teichmüller geodesic flow. The Masur-Veech measure m is the g t -invariant Liouville measure
on Q.

A choice of a basis for the relative homology of the surface defines by integration (holonomy or pe-
riod) local coordinates on Q and the Masur-Veech measure is the Lebesgue measure class in these co-
ordinates. See [8] for a detailed discussion of quadratic differentials.

Theorem .1. (Masur-Veech [7], [10])The Teichmüller geodesic flow g t is mixing for the Masur-Veech mea-
sure.

The proof of Theorem 1.5 again follows the strategy in outlined in [2, Remark 9] namely to show that
any sequence of density 1 contains a rigidity sequence for almost every transformation and for anyα 6= 1,
the set of transformations with α as an eigenvalue has measure zero.

Rigidity sequences for a vertical flow have many equivalent definitions. For the purposes of this ap-
pendix we will require an approximate version of ε rigidity times. We choose the following definition:
given a quadratic differential q let d denote the flat metric on X (q) and let d A be the natural area form
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from its charts to C. We define t to be an ε rigidity time for a flow F on the half-translation surface if∫
X (q) d(x,F t (x))d A < ε.

Proposition .2. Let A be a sequence in R with positive upper density. Then almost every quadratic differ-
ential’s vertical flow has a rigidity sequence in A.

Corollary .3. Let α 6= 1 then

m({q :α is an eigenvalue of the vertical flow on q}) = 0.

Since rational eigenvalues are not special for R-actions, Corollary .3 follows from Proposition .2 anal-
ogous to how Corollary 6.3 follows from Theorem 6.2.

Theorem 1.5 assuming these results. Analogous to the proof of Theorem 1.1, Theorem 1.5 follows from
Proposition .2 and Corollary .3. �

It remains to prove Proposition .2. A metric cylinder for a quadratic differential q is a Euclidean cylin-
der in the flat metric on X (q). Roughly speaking, if X (q) has a metric cylinder with period T in direction
close to vertical and area close to 1, then the vertical flow has a O(ε)+2εdiam(X (q)) rigidity time of about
T . This is because the vertical trajectories that stay in the almost vertical cylinder return close. The tra-
jectories not in the almost vertical cylinder have small measure and are distance at most diam(X (q))
from their starting point. We make this precise below.

Lemma .4. Suppose X (q) has a cylinder C in direction φ with area at least 1− ε and period T > 1. Let θ
be a direction such that |θ−φ| < ε/T 2. If F t

θ
(x) is inside C for all 0 < t < T then d(F t

θ
(x),F t

φ(x)) < ε/T . In

particular, d(F T
θ

(x), x) < ε/T .

Proof. Since a cylinder is convex, there is no singularity along the flat geodesic inside the cylinder C
between F t

θ
(x) and F t

φ(x). Consequently,

d(F t
θ(x),F t

φ(x)) = 2t sin

( |θ−φ|
2

)
6 t |θ−φ| < ε/T.

�

Corollary .5. If ε is small enough then under the assumption of the previous lemma the flow Fθ has ε+
3εdiam(X ) rigidity time at T .

Proof. We show that if ε is small enough then T is a rigidity time by estimating
∫

X (q) d(F T
θ

(x), x)d A. Split

the integral
∫

X (q) d(F T
θ

(x), x)d A over the set W of points such that F t
θ

(x) is in C for 0 < t < T , and com-

plement X (q) \ W . By the previous lemma d(F T
θ

(x), x) < ε/T < ε for all x ∈ W whereas d(F T
θ

(x), x) 6
diamX (q) over X (q) \W . It remains to estimate the area of X (q) \W . To do this first note that d(x,∂C )>
2T sin(|θ−φ|/2) is a sufficient condition for x to be in W . To maximize the area of X (q)\W we maximize
the right hand side of the inequality to consider the extremal case when X (q) \ W contains all points x
such that d(x,∂C )6 ε/T . The cylinder C has circumference T and so the area of the set of points x ∈ C
such that d(x,∂C )6 ε/T is ε. Thus the area of X (q) \W is bounded above by 3ε. �

Lemma .6. Let M > 1. For any small enough ε> 0 there exists a constant cM ,ε := c depending on the genus,
M and ε such that for any measurable set U ⊂ Q for which the diameters of surfaces in U are at most D,
there is L > 1 large enough such that

m({q ∈U : the vertical flow on q has a 4Dε rigidity time in (L,LM })> cm(U ).

The proof of rigidity boils down to renormalization dynamics of the Teichmüller flow. The renormal-
ization dynamics are measure preserving and mixing and so we obtain the lemma.
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Proof. (Renormalization dynamics) Since matrices act affinely on half-translation surfaces if X (g t q) has
a metric cylinder of area at least 1−ε, period T , in direction θ with the vertical foliation then X (q) has a
cylinder of area at least 1−ε with period√

(e t T cosθ)2 + (e−t T sinθ)2

in direction
arctan(e−2t tanθ)

with the vertical. By applying the previous corollary it follows that if X (g t q) has a cylinder of area at least
1−ε, period T , in direction within ε/T 2 of the vertical then the vertical flow on X (q) has a ε+3εdiam(X (q))
rigidity time e t T .

To complete the proof, consider the set of quadratic differentials that have a cylinder with area at least
1− ε, period in T ∈ (1, M) and in direction within angle ε/T 2 of the vertical. These are open conditions
in period coordinates on Q and hence the set contains some closed ball B . As shown above if g t q ∈ B
then q has a cylinder of period between (e t cos(ε),e t M(cos(ε))+ e−t ) in direction within ε/T 2e2t of the
vertical. So it has a 4Dε rigidity time in (e t cos(ε),e t M(cos(ε))+e−t ) ³ (e t , Me t ) where the approximation
is justified since the error is O(ε2). The lemma follows because g t is measure preserving and mixing and
so c can be chosen to be any number smaller than m(B). �

In subsequent arguments we will apply approximations such as above without comment. It should be
noted that the above proof does not require that the periods be restricted to be in (1, M). It goes through
so long as the ratio of the largest to the smallest period is bounded by M . In other words, the proof works
even if T ∈ (T ′,T ′M) for some fixed T ′.

Following the same ideas as Lemma .6 we get:

Corollary .7. Given K a compact part of Q there exists c ′ depending only on the maximal diameter of
surfaces in K and ε so that if A ⊂R then for any open set U ⊂ K and all large enough L we have

m({q ∈U : the vertical flow on q has an ε rigidity time in A∩ (L,LM }) > c ′
|A∩ (L, ML)|

(M −1)L
m(U ).

To prove the corollary we need the straightforward fact that any ball in Q contains an appropriate
"flowbox" with definite proportion of the measure. Let B(q,r ) denote the ball of radius r in the period
co-ordinates centered at q .

Lemma .8. For any B(q,r ), e > 0 there exists δ> 0, V ⊂ B(q,r ) so that

(1) gsV ∈ B(q,r ) for all 06 s6 δ
(2) gsV ∩ gs′V =; for all 06 s < s′6 δ
(3) m

(
B(q,r ) \∪s∈(0,δ)gsV

)< em(B(q,r ))
(4) ∪s∈(0,r )gsV is open for all 0 < r < δ.

Corollary .7. It suffices to prove the corollary for balls. So suppose U = B(q,r ). Set e = 1/9 and let δ,V
be as in Lemma .8. Set M = 1+δ/4 for the range of periods in Lemma .6 and let B ′ be the ball in Lemma
.6 corresponding to this choice of M . The proof proceeds in two steps. First, mixing of the geodesic flow
implies that for all large times t a definite proportion of g t V lands in B ′. Second, for every q ∈ V such
that g t V ∈ B ′, a subset with definite proportion of the flow line gs q given by Lemma .8 has rigidity times
in A. The corollary then follows by applying Fubini’s theorem.

To apply mixing, we pass to a thin slice with base V . To be precise, for δ′ << δ mixing of the geodesic
flow implies that for all t large enough we have

m
(
B ′∩ g t

(∪s∈(0,δ′)gsV
))
>

1

2
m(B ′)m

(∪s∈(0,δ′)gsV
)

.

Following Lemma .6, a quadratic differential q ′ ∈∪s∈(0,δ′)gsV such that g t q ′ is in B ′ has a rigidity time at
e t period(g t q ′). With our choice of M this means that q ′ has a rigidity time between e t and e t (1+δ/4).
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Since g t−s(gs q ′) = g t q ′ it follows that gs q ′ has a rigidity time at e t−speriod(g t q). So for any r ∈ [e t−δ/2,e t ]
we have that r is a rigidity time for some gs q ′ where s < δ.

Let ` be the Lebesgue measure on R and let ρ be the upper density of A. Then there exists arbitrarily
large t so that

`([e t−δ/2,e t ]∩ A) > ρ

2
e t−δ/2(eδ/2 −1).

For t satisfying both inequalities and q ′ ∈ ∪s∈(0,δ′)gsV such that g t q ′ is in B ′, we consider the set of s
such that gs q ′ has a rigidity time r (s) ∈ [e t−δ/2,e t ]∩ A. Since the ratio of the derivatives of the function
s → e t−s at distinct values of s in (0,δ) stays bounded between e−δ and eδ it implies that there is a constant
c ′ such that

1

δ
`

(
{s : gs q ′ has a rigidity time in [e t−δ/2,e t ]∩ A}

)
> c ′

`([e t−δ/2,e t ]∩ A)

e t−δ/2(eδ/2 −1)
> ρc ′

2
.

In other words, a definite proportion of the flow line segment from q ′ has rigidity times in A.
The above inequality along with the inequality from mixing allow us to apply Fubini’s theorem to

conclude that

m({q ′ ∈ B(q,r ) : q ′ has a rigidity time in [e t−δ/2,e t ]∩A}) > 1

4
ρc ′m(B ′)m

(∪s∈(0,δ)gsV
)> 1

36
ρc ′m(B ′)m(B(q,r )).

However, the ball B ′ depends on M which in turn depends on r and so m(B ′) may go to zero as r goes to
zero. Thus, the lower bound above for the proportion of B(q,r ) with rigidity times in A is not uniform in
r and hence the proof of the corollary is not yet complete.

Notice that just as in Lemma .6 the proof of the above inequality does not require that the periods
be restricted between 1 and 1+δ/4. It works as long as the ratio of the largest to the smallest period is
bounded above by 1+δ/4 i.e., as long as the variation in the periods in B is appropriately controlled. So
to complete the proof of the corollary we follow the following steps: given a compact part K and ε (but
before knowing B(q,r )) fix some M > 1 to obtain the ball B as in Lemma .6. Then given B(q,r ) ⊂ K obtain
δ by Lemma .8 and partition B into finitely many measurable sets Bk where the period does not change
by more than a factor of 1+δ/4. Then for each k we get

m({q ′ ∈ B(q,r ) : q ′ has a rigidity time in [e t−δ/2,e t ]∩ A}) > 1

36
ρc ′m(Bk )m(B(q,r )).

Summing over k we get

m({q ′ ∈ B(q,r ) : q ′ has a rigidity time in [e t−δ/2,e t ]∩ A}) > 1

36
ρc ′m(B)m(B(q,r )).

proving the corollary. �

Proposition .2. It suffices to show that for every ε> 0 the set of quadratic differentials that does not have
an ε rigidity time in A has no Lebesgue density points. By Corollary .7 for every q ′ and ε> 0 there exists
c ′ such that for a small enough ball B(q ′,r ) we have

m({q ′′ ∈ B(q ′,r ) : q ′′ does not have an ε rigidity time in A}) <
(
1− 1

36
ρc ′

)
m(B(q ′,r )).

This implies that q ′ can not be a Lebesgue density point for the set of quadratic differentials that do not
have an ε rigidity time in A.

�
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