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Abstract

We establish bounds on the minimal asymptotic pseudo-Anosov translation lengths on the complex of curves of ori-
entable surfaces. In particular, for a closed surface with genusg> 2, we show that there are positive constantsa1 < a2

such that the minimal translation length is bounded below and above bya1/g2 anda2/g2.

1 Introduction

Let Sg,n be an orientable surface with genusg andn punctures. For simplicity, we shall drop the subscripts
and denote it byS. The complex of curvesC (S), is a locally infinite simplicial complex whose vertices are
the isotopy classes of essential, non-peripheral, simple closed curves onS. A collection of vertices span a
simplex if there are representatives of the curves that can be realized disjointly on the surface. Here, we will
assume that the surfaceS is non-sporadic i.e., the complexityξ (S) = 3g−3+n> 2. For sporadic surfaces,
the complex of curvesC (S), is either trivial or well-understood.

The mapping class group Mod(S), is the group of isotopy classes of diffeomorphisms ofS. This group
acts onC (S) in the obvious way. Thurston classified the elements of Mod(S) into three types: finite order,
reducible or pseudo-Anosov. Given a mapping classf ∈ Mod(S), its asymptotic translation length onC (S)
is defined to be

ℓC ( f ) = lim inf
j→∞

dC (α , f j(α))

j

whereα is a simple closed curve onS. The above limit remains unchanged when the numerator is changed
by an additive constant. Hence, by the triangle inequality for dC , the quantityℓC ( f ) is independent of the
choice of curveα .

In [MM99], Masur and Minsky proved thatf ∈ Mod(S) is pseudo-Anosov if and only ifℓC ( f ) > 0. In
[Bow08], Bowditch refined this, proving that the set of translation lengths of pseudo-Anosov elements is a
subset ofQ+ with bounded denominators. We denote the minimal positive number in this set by

LC (Mod(S)) = min{ℓC ( f )| f ∈ Mod(S), pseudo-Anosov}
For closed surfaces, Farb-Leininger-Margalit [FLM08] proved that wheng> 2,

LC (Mod(S)) <
4log(2+

√
3)

glog(g− 1
2)

.

Here, we find a better upper bound forLC (Mod(S)). Moreover, we also show that a lower bound of the
same order holds. To be precise, we show:
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Theorem 1.1. For closed surfaces with g> 2,

1
162(2g−2)2+30(2g−2)

< LC (Mod(S)) 6
4

g2+g−4
.

The upper bound is established by boundingℓC ( f ) in examples of pseudo-Anosov maps and not ex-
pected to be sharp. The examples we use are a subset of those considered by Farb-Leininger-Margalit, but
we obtain better bounds forℓC ( f ). The proof of the lower bound follows the same approach as Masur
and Minsky [MM99], but by keeping track of more information,we obtain sharper bounds. The addi-
tional information comes from the algorithm of Bestvina-Handel that constructs an invariant train track for
a pseudo-Anosov map.

The lower bound in Theorem 1.1 is a part of Theorem 5.1 in whichwe also prove a lower bound for
punctured surfaces. To be precise, whenξ (S)> 2 andn> 0 we show that

1
18(2g−2+n)2+30(2g−2+n)−10n

< LC (Mod(S)).

At the end of the paper, we also discuss upper bounds for some families of punctured surfaces.
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2 The complex of curves

For a broad range of questions in Teichmüller theory and mapping class groups, the coarse geometry of
C (S) plays a key role. See [Min06]. The curve complexC (S) is quasi-isometric to its 1-skeleton equipped
with the path metric. The 1-skeleton is a locally infinite graph. In Proposition 4.6 of [MM99], Masur and
Minsky showed that:

Proposition 2.1. For a non-sporadic surface S, there exists c> 0 such that, for any pseudo-Anosov mapping
class f and any simple closed curveα in C (S)

dC ( f n(α),α)> c|n|

for all n ∈ Z.

In particular, the proposition shows that the curve complexC (S) has infinite diameter. In the same
paper, Masur and Minsky went on to show that the curve complexis δ -hyperbolic in the sense of Gromov.
Proposition 2.1 implies that psuedo-Anosov mapping classes have “north-south” dynamics onC (S) i.e.,
they act ashyperbolicelements onC (S) and have an invariant quasi-axis.

A consequence of Proposition 2.1 is that for non-sporadic surfacesS, the minimal asymptotic translation
length LC (Mod(S)) > 0. In fact, Bowditch showed that the numbersℓC ( f ) are rational with uniformly
bounded denominators [Bow08].

The following fact about the asymptotic lengths of iteratesof f is useful for proving bounds.

Lemma 2.2. For all integers m> 1, ℓC ( f m) = mℓC ( f ).
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Proof. From the definition of liminf

ℓC ( f ) = lim inf
j→∞

dC (α , f j(α))

j
6 lim inf

j→∞

dC (α , f jm(α))

jm

=
1
m

lim inf
j→∞

dC (α , f jm(α))

j
=

1
m
ℓC ( f m)

To get the reverse inequality, we use the triangle inequality, followed by the fact thatf is an isometry of
C (S) i.e.,

dC (α , f jm(α))6
m

∑
i=1

dC ( f (i−1) j(α), f i j (α)) = mdC (α , f j(α))

HenceℓC ( f m)6 mℓC ( f ) and we are done.

3 Train Tracks

For a detailed discussion of train tracks, see [PH92]. We summarize the necessary definitions here.
A train track τ on the surface is an embedded 1-dimensional CW complex with some additional struc-

ture. The edges are calledbranchesand the vertices are calledswitches. The branches are smoothly embed-
ded on the interiors, and there is a common point of tangency to all branches meeting at a switch. This splits
the set of branches incident on a switch into two disjoint subsets, which can be arbitrarily assigned as the
incoming and outgoing edges at the switch. We assume that thevalence of each switch is at least three.

A train route is a regular smooth path inτ . In particular, it traverses a switch only by passing from an
incoming edge to an outgoing edge or vice versa. A train trackσ is carried by τ , denoted byσ ≺ τ , if there
is a homotopy of the identity map of the surface such that every train route inσ is taken to a train route in
τ . In particular, this means thatσ can be embedded in anε neighborhood ofτ . A simple closed curve is
carried by a train track if it is homotopic to a closed train route.

An assignment of non-negative numbers, calledweights, to the branches so that at every switch, the sum
of the incoming weights equals the sum of the outgoing weights is called atransverse measureon the train
track. A closed train route induces a counting measure onτ .

Following Masur-Minsky [MM99], we shall denote the setP(τ) to be the polyhedron of transverse
measures supported onτ and let int(P(τ)) ⊂ P(τ) be the set of transverse measures onτ which induce
positive weights on every branch ofτ . A simple closed curveα carried byτ naturally induces a transverse
measure supported onτ , so by abuse of notationα ∈ P(τ).

A train track is calledlarge if all the complementary regions are polygons or once-punctured polygons.
A train track that has complementary regions ideal triangles or once-punctured monogons is calledmaximal
or complete. It is maximal in the sense that it cannot be a sub-track of some other train track. The comple-
mentary regions of a large train track areideal in the sense that the internal angle at all their vertices is zero.
Hence, the vertices will be calledcusps.

A train trackτ is calledrecurrentif there is a transverse measure which is positive on every branch ofτ .
A train trackτ is transversely recurrentif given a branch ofτ there is a simple closed curve onSthat crosses
the branch and intersectsτ transversely and efficiently i.e. the union ofτ and the simple closed curve has
no complementary bigons. A train track that is both recurrent and transversely recurrent isbirecurrent.

A train trackσ fills τ if it is carried byτ and int(P(σ)) ⊂ int(P(τ)). For recurrent train tracks, this
means that every branch ofτ is traversed by some branch ofσ .
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For a large train trackτ , a train trackσ is called adiagonal extensionof τ if τ is sub-track ofσ , and
each branch inσ \ τ has its endpoints terminate in the cusps of a complementary regions ofτ . Let E(τ)
denote the set of all recurrent diagonal extensions ofτ . It is obvious that this is a finite set. Following Masur
and Minsky, set

PE(τ) =
⋃

σ∈E(τ)
P(σ)

Further, letint(PE(τ)) be the set of measures inPE(τ) that are positive on every branch ofτ .
We begin with a preliminary lemma of Masur and Minsky which will be useful in Section 5; the proof

of the lemma can be found in [MM99].

Lemma 3.1([MM99]) . For large recurrent train tracksσ ,τ , if σ fills τ , then anyσ ′ ∈ E(σ) is carried by
someτ ′ ∈ E(τ). In particular, there is the inclusion PE(σ)⊂ PE(τ).

The nesting lemma of Masur and Minsky:

Given a setA in C (S), let N1(A) denote the 1-neighborhood ofA in C (S). In [MM99], Masur and Minsky
showed the following important result:

Lemma 3.2(Nesting lemma). Let τ be a large birecurrent train track. Then

N1(int(PE(τ))⊂ PE(τ).

In other words, ifα is a curve carried by a diagonal extension ofτ such thatα passes through every
branch ofτ , andβ is a curve disjoint fromα thenβ is also carried by some diagonal extension ofτ .

The original lemma in Masur and Minsky requires thatτ be birecurrent. We show below that the hy-
pothesis of transverse recurrence can be dropped. The proofhere was given by Chris Leininger.

Proof. Let τ be a large recurrent train track and letα be a curve inint(PE(τ)). Letσ be a diagonal extension
of τ carryingα such thatα passes over every branch ofσ i.e., to getσ we add toτ only as many diagonals
as necessary. Thus,α ∈ int(P(σ)). We claim:

Claim 1. Let β be a curve disjoint fromα . Then,β ∈ PE(σ).

Proof. For each branchb of σ , denote byα(b) the weight assigned tob by α . Sinceα ∈ int(P(σ)), the
weightsα(b)> 0 for all b.

Considerσ as an abstract train track. To each branchb, assign a rectangleR(b), of length 1 and width
α(b). Foliate each rectangle by the product foliations i.e., by horizontal and vertical lines. The weights
α(b) satisfy the switch conditions. So the rectangles glue alongtheir widths in a consistent manner to give
a neighborhoodN of σ . See Figure 1.

The foliations also glue up to give a pair of singular foliations ofN , which we continue to call horizontal
and vertical. The horizontal foliation is obtained from a cylinder neighborhood ofα , foliated by leaves
parallel toα , and with parts of its boundary glued together. In particular, we view α as a leaf in the
horizontal foliation ofN . The vertical foliations is byties for σ . The components of the boundary∂N ,
are each a finite union of arcs of singular leaves of the horizontal foliation, and correspond precisely to the
complementary polygons ofσ . In fact,N admits an embedding into the surfaceSas a neighborhood ofσ .

The union of vertical sides of all rectangles is a union of leaves of the vertical foliation. Denote this
union asL. Let Z1, · · · ,Zu be the complementary polygons ofσ . The key observation is that eachZi that has
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Figure 1: Gluing rectangles
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sayk sides, is contained in a unique 2k-gonYi whose sides in a cyclic order, are alternatively arcs ofL and
arcs ofα . For instance, in Figure 2, the complementary regionZi is a quadrilateral. As shown in the picture
on the left, a side ofZi is a union of branches. The rectangles corresponding to the branches are shown in
the picture on the right. The dotted lines in the union of these rectangles are the sides of the 2k-gon that are
arcs ofα . Each of these arcs is a piece ofα first encountered as we move out fromZi across its sides.

Figure 2: The 2k-gon

ZiZi

The surfaceSdecomposes into a union of the even-gons and a set of rectanglesX1, · · · ,Xv. For eachXi,
a pair of opposite sides are arcs ofL, and the other pair of opposite sides are arcs ofα . Also, eachXi is
contained in an original rectangleR(bi), and thatR(bi) contains no otherXk.

Keepingβ disjoint from α , we isotopeβ to minimize the number of intersection points withL. By
construction, each arc inβ \ β ∩ L has to be contained entirely in either a single rectangleXi or a single
even-gonYj , and must connect aL-side to anotherL-side. An arc insideXi connecting itsL-sides traverses
the branchbi . If an arc inYj connects consecutiveL-sides in a cyclic order on theL-sides ofYj , then it
traverses a side ofZ j , which is a union of branches ofσ . On the other hand, if an arc inYj connects
non-consecutiveL-sides, then it traverses a diagonal ofZ j .

It follows thatβ is carried by a diagonal extension ofσ , proving the claim.

Diagonal extensions ofσ are also diagonal extensions ofτ . So, the claim implies thatβ ∈ PE(τ), finishing
the proof of Lemma 3.2.
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4 The Bestvina-Handel algorithm

Definition 4.1. Given a pseudo-Anosov mapping classf ∈ Mod(S), a train trackτ is an invariant train track
of f if τ is large and recurrent, andf (τ)≺ τ .

The Bestvina-Handel train track:

The Bestvina-Handel algorithm takes as input a punctured surface with a pseudo-Anosov mapf and con-
structs an invariant train trackτ for f . The algorithm extends to closed surfaces as follows: Givena pseudo-
Anosov mapf of a closed surface, a singularity of the stable foliation has a finite orbit underf . After
puncturing the surface at these orbit points, the mapf restricts to a pseudo-Anosov map of the punctured
surface. Running the Bestvina-Handel algorithm for the punctured surface yields a train trackτ that is also
an invariant train track for the closed surface. For detailsabout the algorithm, we refer to [BH95]. Here, we
present the features of the trackτ that we need in the proof of Theorem 5.1.

1. The branches ofτ are essentially of two types:real andinfinitesimal. The reason for this classification
is that in passing fromτ to the associated Markov partition for the stable foliation, only the real
branches correspond to rectangles. For a surface with punctures, the algorithm can be carried out
such that the numberr of real branches ofτ is bounded above by 3|χ(S)|, whereχ(S) is the Euler
characteristic ofS. This gives the boundr < 9|χ(S)| for a closed surface.
We will also need an upper bound on the number of infinitesimalbranches. By Propositions 3.3.3 and
3.3.4 of [BH95], the number of valence-2 switches in a Bestvina-Handel train track is at most twice the
number of cusps. Furthermore, each valence-2 switch occurseither between an infinitesimal branch
and a real branch or between two infinitesimal branches. The number of cusps is the largest when a
train track is maximal, and is equal to 6|χ(S)|−2n by an Euler characteristic calculation. This implies
that the number of infinitesimal branches is at most 24|χ(S)|−8n.

2. Along with the trackτ , the algorithm gives a mapτ → τ taking switches to switches, that is efficient in
a certain sense. See Lemma 3.1.2 of [BH95]. There is a homotopy of Ssendingf (τ) into τ such that
the resulting mapτ → τ is the one above. By abuse of notation, we will denote the map fromτ to itself
also by f . Since f maps switches to switches, there is an unambiguously definedtransition matrix
M with entries corresponding to ordered pairs of branches inτ such that the entry corresponding to
the pair(b1,b2) counts the number of timesf (b2) passes overb1. Also becausef maps switches to
switches, the transition matrix forf k is Mk.

Definition 4.2. A matrix M is

(a) irreducible if for any (i, j), there exist a positive integerssuch thatMs has a positive(i, j)-th entry.
(b) non-negativeif every entry ofM is non-negative.
(c) primitive if it is irreducible and non-negative, andMs is a positive matrix for somes.

Bestvina and Handel show that ther × r submatrixMR of M obtained by restricting to the set of real
branchesR is irreducible. In fact, it will be clear in the proof of Lemma4.3 thatMR is primitive.
Additionally, for every infinitesimal branch inτ , there is a real branch such that some iterate of it
passes over the infinitesimal branch.
With n denoting the number of punctures, setc0 = 162 andcn = 18 for all n> 0. A consequence of
the discussion above is:

Lemma 4.3. Given any real branch b, there is positive integer k< cnχ(S)2+24|χ(S)|−8n such that
f k(b) passes over every branch ofτ .
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Proof. In [BH95], Bestvina and Handel show that the transition matrix M has the form:

M =

(
A B
0 MR

)
, (4.1)

whereA is a permutation matrix. In other words,f permutes the infinitesimal branches.
By the definition of irreducibility, some iterate(MR)q has a positive diagonal entry. In fact, by Perron-
Frobenius theory [Gan59],q6 r. From 4.1, it follows that ther × r submatrixMq

R
of Mq given by the

restriction toR is (MR)q i.e.,Mq
R
= (MR)q. The matrixMq is the transition matrix for the iteratef q

which is pseudo-Anosov. SoMq
R

is still irreducible. By Proposition 2.4 in [Tsa09] appliedto Mq
R

, we
know that(Mq

R
)2r is a positive matrix. In particular,MR is primitive.

If we set p = 2rq, then for any real branchb ∈ R, the path f p(b) passes over all real branches.
This implies thatR ⊆ f (R). Since every infinitesimal branch is passed over by an iterate of some real
branch, the inclusion is strict. By iterations, we get the sequence of inclusionsR ⊂ f (R)⊂ f 2(R) · · · ,
where the inclusion remains strict as long asf j+1(R) spreads over a larger set of infinitesimal branches
than f j(R). Let i be the smallest positive integer such that the sequence stabilizes i.e., f i(R) =
f i+1(R). Then f i(R) = τ and the numberi is bounded above by the number of infinitesimal branches,
which in turn is bounded above by 24|χ(S)|−8n.
Setk= p+ i. Then, for any real branchb∈ R, the pathf k(b) crosses all branches ofτ . It remains to
give an upper bound fork in terms ofχ(S).
For a non-sporadic surface with punctures, 0< r 6 3|χ(S)|. So we get the bound

k= p+ i 6 2r2+ i 6 18χ(S)2+24|χ(S)|−8n.

For a non-sporadic closed surface, 0< r 6 9|χ(S)|. So we get the bound

k= p+ i 6 2r2+ i 6 162χ(S)2+24|χ(S)|

3. We shall regard a cusp of a complementary region ofτ asfoldable, if the branchesb1 andb2 that flank
it fold under some iterate i.e., there is some iterate such that the paths f j(b1) and f j(b2) starting from
the same initial switch pass over the same initial branchb. By Property (I2) in Section 4 of [BH95],
the algorithm is carried out such that the branchb that they fold over is always real.
Let σ ∈ E(τ), and letγ be a simple closed curve carried byσ . We have the following lemma:

Lemma 4.4. If γ does not pass over any real branch ofτ , thenγ is incident on a foldable cusp.

Proof. Suppose thatγ does not pass over any real branch ofτ and none of the cusps it passes through
are foldable. Any iterate ofγ must also have the same properties. But then, the iterates cannot converge
to the stable foliation off , giving a contradiction.

5 Lower bounds

Theorem 5.1. When the complexityξ (S)> 2,

LC (Mod(S)) >
1

cnχ(S)2+30|χ(S)|−10n
,

where, as in Lemma 4.3, the constants are c0 = 162and cn = 18 for n> 1.
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Proof. The idea is to combine Lemma 4.3 with the proof of Proposition4.6 in [MM99] to obtain a better
lower bound.

For any pseudo-Anosovf ∈ Mod(S), let τ be the invariant train track off constructed by Bestvina and
Handel. We shall show that after at most(6|χ(S)|−2n+k) iterates off , wherek is the number of iterates
in Lemma 4.3, we get the nesting behavior in the proof of Proposition 4.6 in [MM99]. This gives the lower
bound forLC (Mod(S)) as stated.

For the trackτ , let Bτ be the set of the branches, and|Bτ | its cardinality. Letσ ∈ E(τ). By Lemma
3.1, PE( f (τ)) ⊂ PE(τ). So the imagef (σ) is carried by some diagonal extensionσ ′ ∈ E(τ). Moreover,
f sends switches ofσ to switches ofσ ′. Hence, for each such pair(σ ,σ ′), the transition matrixMσ ,σ ′ :
RBσ → RBσ ′ associated tof is unambiguously defined. Without loss generality, we may assume that the
last |Bτ | coordinates correspond toBτ . Then, the matrixMσ ,σ ′ has the form

Mσ ,σ ′ =

(
∗ 0
∗ M

)
,

whereM is the transition matrix forτ described in Lemma 4.3. For any diagonal extensionσ0 ∈ E(τ), for
anym> 0, we can construct a sequence of train tracksσ1,σ2, · · · ,σm in E(τ) such that

f (σ0)≺ σ1, f (σ1)≺ σ2, · · · , f (σm−1)≺ σm,

hence

f m(σ0)≺ σm.

Let Mσ j ,σ j+1 : RBσ j →R
Bσ j+1 be the transition matrices off associated tof (σ j)≺ σ j+1 in the sequence, and

let Mσ0,σm : RBσm → RBσm be the transition matrix associated tof m. Becausef maps switches to switches,
the matrices satisfy

Mσ0,σm = Mσm−1,σm ×Mσm−2,σm−1 ×·· ·×Mσ1,σ2 ×Mσ0,σ1

=

(
∗ 0
∗ M

)
×
(

∗ 0
∗ M

)
×·· ·×

(
∗ 0
∗ M

)
×
(

∗ 0
∗ M

)

=

(
∗ 0
∗ Mm

)
.

Let µ ∈ P(σ0). We denote byf m(µ) the measure inP(σm) given by the pushforward ofµ by Mσ0,σm. We
now use Lemma 4.3 and Lemma 4.4 to prove the following lemma:

Lemma 5.2. For any µ ∈ P(σ0), there exists some positive integer m such that k6 m6 6|χ(S)|−2n+ k,
where k is the number of iterates in Lemma 4.3, the measure fm(µ) ∈ P(σm) is positive on every branch in
Bτ , that is fm(µ) ∈ int(PE(τ)).

Proof. We consider the simplest case first:

Case 1: Supposeµ is positive on some real branchb in Bτ . By Lemma 4.3, the transition matrix with
respect toτ , for f k has the form:

Mk =

(
∗ B̂
0 Mk

R

)
,
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whereB̂ andMk
R

are positive matrices. In particular, the image pathf k(b) passes over every branch inBτ .
Hence, the measuref k(µ) = Mσ0,σk(µ) in P(σk) is positive on every branch inBτ . The same reasoning
applied to all integersm> k implies that the measuref m(µ) = Mσ0,σm(µ) is positive on every branch ofBτ ,
finishing the proof of Lemma 5.2 in this case.

Case 2:Supposeµ is not positive on any real branch. We shall show that inj 6 6|χ(S)|−2n iterates the
measuref j(µ) = Mσ0,σ j (µ) is positive on some real branch, reducing us to Case 1. This isdone in two
steps: In Step 1, we show thatSupp(µ) contains a diagonald that is incident on a foldable cuspc. In Step
2, we show that the branchesb1 andb2 that flankc, fold over a real branchb in j 6 6|χ(S)|−2n iterates.
Then f j(d) also passes overb from which it follows thatf j(µ) assigns positive weight tob.

Step 1:Supposeµ is positive on some simple closed curveγ carried byσ0. By Lemma 4.4, the curveγ must
be incident on a foldable cusp. Hence,Supp(µ) contains a diagonald that is incident on a foldable cuspc.

Step 2:Let b1 andb2 be the branches that flankc. Let j be the smallest iterate in whichb1 andb2 fold.
By Part (3) of Section 4, the branchb that they fold over is real. We claim thatj 6 6|χ(S)| − 2n. By an
Euler characteristic calculation, the total number of cusps is at most 6|χ(S)|−2n. If b1 andb2 do not fold
within 6|χ(S)|−2n iterates, then there is a foldable cuspc′ such thatf a(c′) = c′ for some iteratef a. But
then f ma(c′) = c′ for all positive integersm. Thus,c′ never gets folded giving a contradiction. This proves
the claim.

Finally, combining this with Case 1, we conclude that form= j +k6 6|χ(S)|−2n+k, the measuref m(µ)
is positive on every branch inBτ finishing the proof of Lemma 5.2.

Back to Theorem 5.1, Lemma 5.2 implies that for anyσ0 ∈ E(τ), and for anyµ ∈ P(σ0),

f w(µ) ∈ int(PE(τ)),

wherew= 6|χ(S)|−2n+k. Hence,

f w(PE(τ))⊂ int(PE(τ)). (5.1)

Now setτ1 = τ , and for each positive integeri > 1, letτi = f iw(τ). The inclusion (5.1) impliesPE(τi+1)⊂
int(PE(τi)). By Lemma 3.2, we get the nesting sequence:

P(τi+1)⊂ int(PE(τi))⊂N1 (int(PE(τi)))⊂ PE(τi)⊂ ·· · ⊂ int(PE(τ1))⊂N1(int(PE(τ1)))⊂ PE(τ1)

Chooseα ∈ C (S)\PE(τ1) such thatf w(α) ∈ PE(τ1). Then f iw(α) is in PE(τi) but not inPE(τi+1). Thus
dC ( f iw(α),α)> i. Hence

ℓC ( f w) = lim inf
i→∞

dC ( f iw(α),α)

i
> lim inf

i→∞

i
i
= 1.

By Lemma 2.2, we haveℓC ( f w) = wℓC ( f ). So

ℓC ( f )>
1
w

>
1

cnχ(S)2+30|χ(S)|−10n
,

wherec0 = 162 andcn = 18 for n> 1.
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6 Upper bound

Next, for a closed surfaceS, we prove an upper bound forLC (Mod(S)) of the same order.

Theorem 6.1. For a closed surface of genus g> 2,

LC (Mod(S)) 6
4

g2+g−4
.

Proof. It is sufficient to find a pseudo-Anosov mapping classf such thatℓC ( f ) 6 4
g2+g−2. We show this

for the pseudo-Anosov map of a closed surface of genusg constructed by Penner in [Pen91]. The Penner
example is as follows: For the closed surface of genusg in Figure 3, let f = ρTc1T

−1
b1

Ta1, whereTa1 is a
positive Dehn twist alonga1, ρ(ai) = ai−1, for i = 2, · · · ,g andρ(a1) = ag and similarly for thebi ’s andci ’s.

a1

a2

a3

a4

a5

ag

ag−1

ag−2

ag−3

ag−4

ag−5

b1

b2

b3

b4

b5

bg

bg−1

bg−2

bg−3

bg−4

bg−5

c1

c2
c3

c4

c5
cg

cg−1

cg−2

cg−3cg−4

Figure 3: f = ρTc1T
−1
b1

Ta1 ∈ Mod(S).

SinceℓC ( f ) is independent of the initial choice of curve to apply iterations to, we choose the curveag and

show that for somek> g2+g−4
2 ,

dC ( f k(ag),ag)6 2. (6.1)
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By the triangle inequality,

ℓC ( f k) = lim inf
j→∞

dC ( f jk(ag),ag)

j
6 lim inf

j→∞

2 j
j
= 2,

and by Lemma 2.2,

ℓC ( f )6
2
k
6

4
g2+g−4

.

For g= 2, letk= 1> 22+2−4
2 = 1 and notice thatf (a2) = a1. Sincea1 anda2 are disjoint,dC ( f (a2),a2) =

1< 2, and we are done.
For a sequence of curvesαr ∈ {ai ,bi ,ci}g

i=1 such thatα1∪ ·· · ∪αk is connected, we denote the regular
neighborhood of the unionα1∪·· ·∪αk byN (α1 · · ·αk). To show (6.1) in general, the key idea is as follows:
Suppose thatf j is the smallest iterate in whichf j(ag) is spread overk “holes”. Then it takes waiting time
(g+1) for the images to sweep over(k+2) holes. In other words,f j(g+1) is the smallest iterate in which
the image ofag sweeps over(k+2) holes. To be precise, among the neighborhoods defined above,we keep
track of which is the “smallest” one containing the image ofag.

In first (g−1) iteratesag gets rotated till it becomesa1 i.e., f g−1(ag) = a1. In two iterates that follow:

f g(ag)⊂ N (agbgcg) , f g+1(ag)⊂ N (cgag−1bg−1cg−1).

In the same manner, continuing the iterations, notice that:

f 2(g+1)(ag)⊂ N (cgbg−1cg−1ag−2bg−2cg−2bg−3cg−3) .

f 3(g+1)(ag)⊂ N (cgbg−1cg−1ag−2bg−2cg−2 · · ·ag−4bg−4cg−4bg−5cg−5) .

We observe that after eachf g+1 iterates the subscript forc rightmost insideN decreases by 2. In other
words, it requires(g+1) iterates to increase the “complexity” of the image ofag by 2. Here, we abbreviate
notation as follows:

N (cg∗cg−2i+1) := N (cgbg−1cg−1ag−2bg−2cg−2 · · ·ag−2i+2bg−2i+2cg−2i+2bg−2i+1cg−2i+1ag−i)

Then, we have

f g+1(ag)⊂ N (cg ∗cg−1),

f 2(g+1)(ag)⊂ N (cg ∗cg−3)

f 3(g+1)(ag)⊂ N (cg ∗cg−5)

...

f ⌊
g−1

2 ⌋(g+1)(ag)⊂ N

(
cg ∗cg−2⌊ g−1

2 ⌋+1

)
.

Finally,

f g−1
(

f ⌊
g−1

2 ⌋(g+1)(ag)
)
⊂ N

(
ρ−1

(
cg∗cg−2⌊ g−1

2 ⌋+1

)
b3c3b2c2

)
,

where the inclusion is into a smaller neighborhood ifg is even.
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Notice thatN
(

ρ−1
(

cg ∗cg−2⌊ g−1
2 ⌋+1

)
b3c3b2c2

)
, and hencef g−1

(
f ⌊

g−1
2 ⌋(g+1)(ag)

)
, is disjoint from

a1, and of coursea1 andag are disjoint. Hence

dC

(
ag, f k(ag)

)
6 2,

where

k= (g−1)+ ⌊g−1
2

⌋(g+1)>
2(g−1)+ (g−2)(g+1)

2
=

g2+g−4
2

.

More generally, as described in Appendix 5.2 of [Tsa09], a method similar to [Pen91] constructs pseudo-
Anosov homeomorphisms of certain punctured surfaces from pseudo-Anosov homeomorphisms of closed
surfaces. We start with the Penner pseudo-Anosov mapf of the closed surfaceSg. We add in punctures in
some or all of the complementary regions according to the criteria of Theorem 3.1 in [Pen88]. Then, the
restriction of f is a pseudo-Anosov on the punctured surface. A proof similarto Theorem 6.1 provides upper
bounds onLC (Mod(Sg,n)) of the order 1/χ(Sg,n)

2. We list the cases in which we get 1/χ(Sg,n)
2 type upper

bounds:

1. For punctured tori withn even: we use the example in Appendix 5.1 of [Tsa09].

2. Forg> 5 andn= g−1 or 2g−2: we use Example 3 in Appendix 5.2 of [Tsa09] .

3. Forg> 3 andn6 4: we use Example 2 in Appendix 5.2 of [Tsa09] .

4. Forg> 2 andn = 1, 2, g, g+1 or g+2: We use Penner’s example in Theorem 6.1, puncturing the
surface at the appropriate points.

In some cases, the upper bound can be of the order of 1/|χ(Sg,n)|. For example, wheng= 2 andn is
varying, the example in Section 4 of [Tsa09] gives the bound

LC (Mod(Sg,n))6
20

n−4
,

for all n> 4. We propose the following conjecture:

Conjecture 6.2. For fixed g> 2 and n varying, LC (Mod(Sg,n)) is of the order of 1
|χ(Sg,n)| as n→ ∞.
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