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Abstract

We establish bounds on the minimal asymptotic pseudo-Antvaaslation lengths on the complex of curves of ori-
entable surfaces. In particular, for a closed surface watiugg > 2, we show that there are positive constamts: a,
such that the minimal translation length is bounded belosvabove bya; /g2 anday/g?.

1 Introduction

Let §;» be an orientable surface with gengiandn punctures. For simplicity, we shall drop the subscripts
and denote it bys. The complex of curve®’(S), is a locally infinite simplicial complex whose vertices are
the isotopy classes of essential, non-peripheral, simpked curves o1 A collection of vertices span a
simplex if there are representatives of the curves that eaedlized disjointly on the surface. Here, we will
assume that the surfa&ds non-sporadic i.e., the complexi&(S) = 3g— 3+ n > 2. For sporadic surfaces,
the complex of curve®’(S), is either trivial or well-understood.

The mapping class group M@8), is the group of isotopy classes of diffeomorphisms$of his group
acts oné'(S) in the obvious way. Thurston classified the elements of (@phto three types: finite order,
reducible or pseudo-Anosov. Given a mapping classMod(S), its asymptotic translation length 6fi(S)
is defined to be

l (1) = liminf

j—reo

de(a, fl(a))
j

wherea is a simple closed curve dd The above limit remains unchanged when the numerator rgeith
by an additive constant. Hence, by the triangle inequatitydf,, the quantity/,(f) is independent of the
choice of curven.

In [MM99], Masur and Minsky proved that € Mod(S) is pseudo-Anosov if and only #,(f) > 0. In
[Bow08], Bowditch refined this, proving that the set of tratisn lengths of pseudo-Anosov elements is a
subset ofQ, with bounded denominators. We denote the minimal positivalrer in this set by

Ly (Mod(S)) = min{lx(f)|f € Mod(S), pseudo-Anosoy
For closed surfaces, Farb-Leininger-Margalit [FLMO8]yed that wherg > 2,
4log(2+/3)
glog(g— 3)

Here, we find a better upper bound fog(Mod(S)). Moreover, we also show that a lower bound of the
same order holds. To be precise, we show:

Lg(MOd(S)) <



Theorem 1.1. For closed surfaces with g 2,
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< -
162(2g—2)2+30(2g—2) <L%(Mod($) < °+g—-4

The upper bound is established by bounding f) in examples of pseudo-Anosov maps and not ex-
pected to be sharp. The examples we use are a subset of thesgeced by Farb-Leininger-Margalit, but
we obtain better bounds fdk,(f). The proof of the lower bound follows the same approach asuMas
and Minsky [MM99], but by keeping track of more informatiowe obtain sharper bounds. The addi-
tional information comes from the algorithm of Bestvinardal that constructs an invariant train track for
a pseudo-Anosov map.

The lower bound in Theorem 1.1 is a part of Theorem 5.1 in wkiehalso prove a lower bound for
punctured surfaces. To be precise, wi§¢8) > 2 andn > 0 we show that

1
18(2g—2+n)2+30(2g—2+n) — 10n

< Lg(Mod(9)).
At the end of the paper, we also discuss upper bounds for samiéds of punctured surfaces.
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2 The complex of curves

For a broad range of questions in Teichmuller theory andpimgpclass groups, the coarse geometry of
% (S) plays a key role. See [Min06]. The curve compl€xS) is quasi-isometric to its 1-skeleton equipped
with the path metric. The 1-skeleton is a locally infinite gra In Proposition 4.6 of [MM99], Masur and
Minsky showed that:

Proposition 2.1. For a non-sporadic surface S, there exists 0 such that, for any pseudo-Anosov mapping
class f and any simple closed curaén (S

dg(f"(a),a) = cin|
foralln e Z.

In particular, the proposition shows that the curve com&®) has infinite diameter. In the same
paper, Masur and Minsky went on to show that the curve comipléxhyperbolic in the sense of Gromov.
Proposition 2.1 implies that psuedo-Anosov mapping classee “north-south” dynamics c#(9) i.e.,
they act adyperbolicelements or¢’(S) and have an invariant quasi-axis.

A consequence of Proposition 2.1 is that for non-sporadi@asesS, the minimal asymptotic translation
length Ly (Mod(S)) > 0. In fact, Bowditch showed that the numbets(f) are rational with uniformly
bounded denominators [Bow08].

The following fact about the asymptotic lengths of iteratég is useful for proving bounds.

Lemma 2.2. For all integers m> 1, lo(f™) = méy ().



Proof. From the definition of liminf

- de(a, fi(a)
le(f) = liminf ——==
%( ) j—00 ] j—roo jm

o Jm
— l”minf M = Eg%(fm)
m j—ow J m

To get the reverse inequality, we use the triangle inequdbitlowed by the fact thaff is an isometry of
¢S ie.,

dy(a, (@) < _idsg(f(il”(a)v f(a)) =mds(a, f!(a)

Hencel, (f™) < mé,(f) and we are done. O

3 Train Tracks

For a detailed discussion of train tracks, see [PH92]. Wensarize the necessary definitions here.

A train track T on the surface is an embedded 1-dimensional CW complex witlesadditional struc-
ture. The edges are callbdanchesand the vertices are callevitches The branches are smoothly embed-
ded on the interiors, and there is a common point of tangemaill branches meeting at a switch. This splits
the set of branches incident on a switch into two disjointssty which can be arbitrarily assigned as the
incoming and outgoing edges at the switch. We assume thatteece of each switch is at least three.

A train routeis a regular smooth path in In particular, it traverses a switch only by passing from an
incoming edge to an outgoing edge or vice versa. A train ttackcarried by 1, denoted byo < 1, if there
is a homotopy of the identity map of the surface such thatyetram route ing is taken to a train route in
1. In particular, this means that can be embedded in anneighborhood oft. A simple closed curve is
carried by a train track if it is homotopic to a closed train route.

An assignment of non-negative numbers, callailghts to the branches so that at every switch, the sum
of the incoming weights equals the sum of the outgoing wsightalled dransverse measum@n the train
track. A closed train route induces a counting measure.on

Following Masur-Minsky [MM99], we shall denote the detr) to be the polyhedron of transverse
measures supported anand letint(P(7)) C P(1) be the set of transverse measuresrorhich induce
positive weights on every branch of A simple closed curver carried byt naturally induces a transverse
measure supported anso by abuse of notatiom € P(7).

A train track is calledarge if all the complementary regions are polygons or once-pueck polygons.

A train track that has complementary regions ideal triasmigieonce-punctured monogons is caltedximal
or complete It is maximal in the sense that it cannot be a sub-track ofesother train track. The comple-
mentary regions of a large train track @ealin the sense that the internal angle at all their verticeslis.z
Hence, the vertices will be callenisps

A train trackr is calledrecurrentif there is a transverse measure which is positive on evenydbr oft.

A train trackT is transversely recurrerif given a branch of there is a simple closed curve 8ithat crosses
the branch and intersectstransversely and efficiently i.e. the union oand the simple closed curve has
no complementary bigons. A train track that is both recuregnl transversely recurrentb@ecurrent

A train track o fills T if it is carried by T andint(P(o)) C int(P(t)). For recurrent train tracks, this
means that every branch ofis traversed by some branch of



For a large train track, a train tracko is called adiagonal extensiomf T if T is sub-track ofo, and
each branch iro \ T has its endpoints terminate in the cusps of a complemenggipns ofr. Let E(T)
denote the set of all recurrent diagonal extensiors tifis obvious that this is a finite set. Following Masur
and Minsky, set

PE(T)= |J P(o)

ocE(T)

Further, letint(PE(T)) be the set of measuresRE(T) that are positive on every branch of
We begin with a preliminary lemma of Masur and Minsky whicHlWwe useful in Section 5; the proof
of the lemma can be found in [MM99].

Lemma 3.1([MM99]). For large recurrent train trackss, 7, if o fills 7, then anyo’ € E(0) is carried by
somet’ € E(1). In particular, there is the inclusion PEr) C PE(T).

The nesting lemma of Masur and Minsky:

Given a sefAin € (S), let #1(A) denote the 1-neighborhood Afin € (S). In [MM99], Masur and Minsky
showed the following important result:

Lemma 3.2(Nesting lemma) Let T be a large birecurrent train track. Then
A1(int(PE(T)) C PE(T).

In other words, ifa is a curve carried by a diagonal extensiontafuch thata passes through every
branch ofr, andg is a curve disjoint frontr thenp is also carried by some diagonal extensiorr of

The original lemma in Masur and Minsky requires thiabe birecurrent. We show below that the hy-
pothesis of transverse recurrence can be dropped. Thelpeoofvas given by Chris Leininger.

Proof. Let 1 be alarge recurrent train track anddebe a curve innt(PE(T)). Leto be a diagonal extension
of T carryinga such thatr passes over every branchmf.e., to geto we add tor only as many diagonals
as necessary. Thug,< int(P(o)). We claim:

Claim 1. LetS be a curve disjoint fronw. Then,3 € PE(0).

Proof. For each branch of o, denote bya (b) the weight assigned to by a. Sincea € int(P(0)), the
weightsa (b) > 0 for all b.

Considero as an abstract train track. To each brabchssign a rectanglg(b), of length 1 and width
a(b). Foliate each rectangle by the product foliations i.e., bsizontal and vertical lines. The weights
o (b) satisfy the switch conditions. So the rectangles glue atbeg widths in a consistent manner to give
a neighborhood#” of o. See Figure 1.

The foliations also glue up to give a pair of singular folwes of. 4", which we continue to call horizontal
and vertical. The horizontal foliation is obtained from dirger neighborhood oftr, foliated by leaves
parallel toa, and with parts of its boundary glued together. In particuwee view a as a leaf in the
horizontal foliation of.#". The vertical foliations is byiesfor o. The components of the boundady/”,
are each a finite union of arcs of singular leaves of the hot&doliation, and correspond precisely to the
complementary polygons af. In fact,.#” admits an embedding into the surfe8as a neighborhood af.

The union of vertical sides of all rectangles is a union of/ésaof the vertical foliation. Denote this
union ad.. LetZ,,--- ,Z, be the complementary polygons@f The key observation is that eaghthat has
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Figure 1: Gluing rectangles

sayk sides, is contained in a uniqu&-gonY; whose sides in a cyclic order, are alternatively arck ahd
arcs ofa. For instance, in Figure 2, the complementary red@ipis a quadrilateral. As shown in the picture
on the left, a side 0E; is a union of branches. The rectangles corresponding tordreches are shown in
the picture on the right. The dotted lines in the union of ¢hextangles are the sides of tHegbn that are
arcs ofa. Each of these arcs is a piecemfirst encountered as we move out franacross its sides.

Figure 2: The R-gon

The surfacesdecomposes into a union of the even-gons and a set of reetagl - - , X,. For eachx;,

a pair of opposite sides are arcslgfand the other pair of opposite sides are arca ofAlso, eachX; is
contained in an original rectangR{b;), and thatR(b;) contains no othexy.

Keeping 3 disjoint from a, we isotopef to minimize the number of intersection points with By
construction, each arc i\ B NL has to be contained entirely in either a single rectadgler a single
even-gornj, and must connect la-side to anothek-side. An arc inside; connecting itd_-sides traverses
the branchb;. If an arc inY; connects consecutivie-sides in a cyclic order on thie-sides ofYj, then it
traverses a side dfj, which is a union of branches af. On the other hand, if an arc M connects
non-consecutivé-sides, then it traverses a diagonalZgf

It follows that 3 is carried by a diagonal extension @f proving the claim. O

Diagonal extensions af are also diagonal extensionsfSo, the claim implies thg € PE(1), finishing
the proof of Lemma 3.2. O



4 The Bestvina-Handel algorithm

Definition 4.1. Given a pseudo-Anosov mapping cldss Mod(S), a train trackr is an invariant train track
of fif Tis large and recurrent, anfd ) < .

The Bestvina-Handel train track:

The Bestvina-Handel algorithm takes as input a puncturgda with a pseudo-Anosov mdpand con-
structs an invariant train traakfor f. The algorithm extends to closed surfaces as follows: Giveseudo-
Anosov mapf of a closed surface, a singularity of the stable foliatios h&finite orbit underf. After
puncturing the surface at these orbit points, the rhapstricts to a pseudo-Anosov map of the punctured
surface. Running the Bestvina-Handel algorithm for thecpured surface yields a train trackthat is also

an invariant train track for the closed surface. For detgiisut the algorithm, we refer to [BH95]. Here, we
present the features of the trackhat we need in the proof of Theorem 5.1.

1. The branches af are essentially of two typeseal andinfinitesimal The reason for this classification

is that in passing front to the associated Markov partition for the stable foliationly the real
branches correspond to rectangles. For a surface with ymeisgtthe algorithm can be carried out
such that the numbaer of real branches of is bounded above by|8(S)|, wherex(S) is the Euler
characteristic of. This gives the bound < 9|x (S)| for a closed surface.
We will also need an upper bound on the number of infinitesinahches. By Propositions 3.3.3 and
3.3.4 of [BH95], the number of valence-2 switches in a Bestuiandel train track is at most twice the
number of cusps. Furthermore, each valence-2 switch oestrsr between an infinitesimal branch
and a real branch or between two infinitesimal branches. Thaber of cusps is the largest when a
train track is maximal, and is equal to@@S)| — 2n by an Euler characteristic calculation. This implies
that the number of infinitesimal branches is at mos$y28)| — 8n.

2. Along with the trackr, the algorithm gives a map— 71 taking switches to switches, that is efficient in
a certain sense. See Lemma 3.1.2 of [BH95]. There is a hoyato sendingf (1) into 7 such that
the resulting map — 1 is the one above. By abuse of notation, we will denote the maap f to itself
also by f. Sincef maps switches to switches, there is an unambiguously definadition matrix
M with entries corresponding to ordered pairs of branches snch that the entry corresponding to
the pair(by,by) counts the number of timef(b,) passes ove;. Also becausd maps switches to
switches, the transition matrix fd is MX.

Definition 4.2. A matrix M is

(a) irreducibleif for any (i, j), there exist a positive integesuch thatM® has a positivéi, j)-th entry.
(b) non-negativdf every entry ofM is non-negative.

(c) primitiveif it is irreducible and non-negative, am is a positive matrix for some

Bestvina and Handel show that the r submatrixMg of M obtained by restricting to the set of real
branchesZ is irreducible. In fact, it will be clear in the proof of Lemn#a3 thatMy, is primitive.
Additionally, for every infinitesimal branch im, there is a real branch such that some iterate of it
passes over the infinitesimal branch.

With n denoting the number of punctures, sgt= 162 andc, = 18 for alln > 0. A consequence of
the discussion above is:

Lemma 4.3. Given any real branch b, there is positive integet knx (S)? + 24|x (S)| — 8n such that
fK(b) passes over every branch of



Proof. In [BH95], Bestvina and Handel show that the transition ma# has the form:

A B
M:(O M@), (4.1)

whereA is a permutation matrix. In other wordk permutes the infinitesimal branches.

By the definition of irreducibility, some iteraté4)% has a positive diagonal entry. In fact, by Perron-
Frobenius theory [Gan59, < r. From 4.1, it follows that the x r submatrixsz of M4 given by the
restriction to% is (My)% i.e., M3, = (M)9. The matrixM? is the transition matrix for the iterate?
which is pseudo-Anosov. 9d, is still irreducible. By Proposition 2.4 in [Tsa09] applieziMZ,, we
know that(Mj?)2r is a positive matrix. In particulaM is primitive.

If we setp = 2rq, then for any real brancbh € #, the pathfP(b) passes over all real branches.
This implies thatz C f(#). Since every infinitesimal branch is passed over by an éerBsome real
branch, the inclusion is strict. By iterations, we get thgusmce of inclusions? C (%) c f2(%)---,
where the inclusion remains strict as lond &3 (%) spreads over a larger set of infinitesimal branches
than fJ(%). Leti be the smallest positive integer such that the sequencéiztati.e., f'(%) =
fi+1(#). Thenf! (%) = 1 and the numbeiris bounded above by the number of infinitesimal branches,
which in turn is bounded above by 34S)| — 8n.

Setk = p+i. Then, for any real brandh € %, the pathf¥(b) crosses all branches of It remains to
give an upper bound fdein terms ofx (S).

For a non-sporadic surface with punctures; 0< 3|x(S)|. So we get the bound

k=p+i<2r®+i<18x(S)*+24|x(S)|—8n.
For a non-sporadic closed surfaces® < 9x(S)|. So we get the bound
k= p+i<2r?4+i<162((92%+24x(9)|
O

3. We shall regard a cusp of a complementary regionagfoldable if the branche®; andb; that flank
it fold under some iterate i.e., there is some iterate such thatthe fi (b;) and f!(b,) starting from
the same initial switch pass over the same initial bramcBy Property (12) in Section 4 of [BH95],
the algorithm is carried out such that the brabdhat they fold over is always real.

Let o € E(1), and lety be a simple closed curve carried by We have the following lemma:

Lemma 4.4. If y does not pass over any real branchtotheny is incident on a foldable cusp.
Proof. Suppose thay does not pass over any real branchr @nd none of the cusps it passes through

are foldable. Any iterate gf must also have the same properties. But then, the iteratesiceonverge
to the stable foliation of, giving a contradiction. O

5 Lower bounds

Theorem 5.1. When the complexit§(S) > 2,
1
cnX (S + 30X (S — 100’

where, as in Lemma 4.3, the constants are-=cl62and G, = 18for n > 1.

Ly (Mod(S)) >



Proof. The idea is to combine Lemma 4.3 with the proof of Proposiddahin [MM99] to obtain a better
lower bound.

For any pseudo-Anosof € Mod(S), let T be the invariant train track of constructed by Bestvina and
Handel. We shall show that after at mé6tx (S)| — 2n+ k) iterates off, wherek is the number of iterates
in Lemma 4.3, we get the nesting behavior in the proof of Psdjom 4.6 in [MM99]. This gives the lower
bound forL,(Mod(S)) as stated.

For the trackr, let #; be the set of the branches, ap#;| its cardinality. Leto € E(1). By Lemma
3.1,PE(f(1)) C PE(T). So the imagef (o) is carried by some diagonal extensiohe E(1). Moreover,
f sends switches aof to switches ofo’. Hence, for each such pdio, g’), the transition matriMg o :
R%s — R%o associated td is unambiguously defined. Without loss generality, we mayae that the
last|%:| coordinates correspond 8;. Then, the matriM, o has the form

x| 0
Ma.a':<* M )7

whereM is the transition matrix for described in Lemma 4.3. For any diagonal extensipr E(T), for
anym > 0, we can construct a sequence of train traek®y, - - - , oy in E(7) such that

f(0o) < 01, f(01) < 02, , f(Om-1) < Om,
hence
fM(0o) < Om.

LetMg, 0, ¢ R” — R”4i+1 be the transition matrices dfassociated td(oj) < gj,1inthe sequence, and
let Mg, o, : R%om — R#em pe the transition matrix associated ft8. Becausef maps switches to switches,
the matrices satisfy

Moo,0m = Mo _1.0m X Mo 2.0m-1 X - X Moy g, X Mg,y
:<>x< O>X<*‘O>me<* 0>><<* O>
* | M *‘M * | M * | M
x| 0
()

Let u € P(0p). We denote byf™ (1) the measure ifP(om) given by the pushforward gi by Mg, .. We
now use Lemma 4.3 and Lemma 4.4 to prove the following lemma:

Lemma 5.2. For any u € P(0p), there exists some positive integer m such thatrk < 6/x(S)| — 2n+Kk,
where k is the number of iterates in Lemma 4.3, the measlg)fe P(on) is positive on every branch in
Py, thatis f(u) € int(PE(T)).

Proof. We consider the simplest case first:

Case 1: Supposeu is positive on some real brand¢hin %;. By Lemma 4.3, the transition matrix with
respect tar, for f¥ has the form:

~

B
v (5w )
0 ™



whereB and Mtg'jZ are positive matrices. In particular, the image pélttb) passes over every branch.#.
Hence, the measure (i) = Mg, ¢, (1) in P(dk) is positive on every branch i#8;. The same reasoning
applied to all integersn > kimplies that the measurié"(u) = Mg, o,,(H) is positive on every branch o,
finishing the proof of Lemma 5.2 in this case.

Case 2: Supposeu is not positive on any real branch. We shall show that {1 6|x (S)| — 2n iterates the
measuref! (1) = May,0; (1) is positive on some real branch, reducing us to Case 1. Tierig in two
steps: In Step 1, we show th&tpgu) contains a diagonal that is incident on a foldable cusgp In Step
2, we show that the branchés andb, that flankc, fold over a real brancb in j < 6|x(S)| — 2n iterates.
Thenfi(d) also passes ovérfrom which it follows thatfi(u) assigns positive weight to

Step 1:Supposeu is positive on some simple closed cunwearried bygp. By Lemma 4.4, the curvg must
be incident on a foldable cusp. Hen&ypgu) contains a diagonal that is incident on a foldable cusp

Step 2:Let b; andb, be the branches that flark Let j be the smallest iterate in whidh andb, fold.

By Part (3) of Section 4, the brandhthat they fold over is real. We claim that< 6/x(S)| —2n. By an
Euler characteristic calculation, the total number of suispat most g (S)| — 2n. If by andb, do not fold
within 6|x (S)| — 2n iterates, then there is a foldable cussuch thatf(c’) = ¢’ for some iteratef@. But
then fM3(c’) = ¢ for all positive integersn. Thus,c’ never gets folded giving a contradiction. This proves
the claim.

Finally, combining this with Case 1, we conclude thatrior j +k < 6/x (S)| — 2n+k, the measuré™(u)
is positive on every branch i%¥; finishing the proof of Lemma 5.2. O

Back to Theorem 5.1, Lemma 5.2 implies that for anyc E(1), and for anyu € P(0o),
f¥(u) € int(PE(T)),
wherew = 6| x(S)| — 2n+ k. Hence,
fY(PE(1)) C int(PE(T)). (5.1)

Now setr; = T, and for each positive integee= 1, let; = £\ (7). The inclusion (5.1) impliePE(ti41) C
int(PE(t;)). By Lemma 3.2, we get the nesting sequence:

P(ti+1) Cint(PE(T)) C A1 (int(PE(T))) C PE(Ti) C --- Cint(PE(11)) C A1 (int(PE(11))) C PE(T1)
Choosea € €(S)\ PE(11) such thatf¥(a) € PE(ty). Thenf"(a) is in PE(t;) but not inPE(T;11). Thus

dy (fW(a),a) > i. Hence

iw i
to (%) = timing SO o ety

j—o00 | i—oo |

By Lemma 2.2, we havé, (V) =wl(f). So

1 1
- > ,
W Cax(S)2+30x(S)|—10n

te() >

wherecg = 162 andc, = 18 forn > 1. O



6 Upper bound

Next, for a closed surfacg we prove an upper bound far,(Mod(S)) of the same order.

Theorem 6.1. For a closed surface of genusg2,

4
Ly¥(Mod(9) < 50—

Proof. It is sufficient to find a pseudo-Anosov mapping cldssuch that/ (f) < 92%72. We show this
for the pseudo-Anosov map of a closed surface of ggneenstructed by Penner ing[Pen91]. The Penner
example is as follows: For the closed surface of gemurs Figure 3, letf = pTClszlTal, whereT,, is a

positive Dehn twist alongy, p(&) = a1, fori=2,--- ,gandp(a;) = ag and similarly for theb;’s andgc;’s.
ag—4

Figure 3:f = pTe, T, ' T, € Mod(S).

Sincely (f) is independent of the initial choice of curve to apply itemas to, we choose the cunag and
show that for somé > 92+Tg4,

d (F4(ag),8g) < 2 (6.1)

10



By the triangle inequality,

Ly (£5) = liminf M < liminf a_ 2,

j—reo J j=e ]
and by Lemma 2.2,

2 4

<E<—H——n.
(<< ?>+g—4

Forg=2, letk=1> 22*%‘ = 1 and notice thaf (ay) = a;. Sincea; anday are disjoint,d, (f(ay),a) =
1 < 2, and we are done.

For a sequence of curves € {a,b;,¢; }ig:1 such thata; U- - - U ag is connected, we denote the regular
neighborhood of the uniomy U---Uay by 4" (a; - - - ak). To show (6.1) in general, the key idea is as follows:
Suppose thaf! is the smallest iterate in whicf (ag) is spread ovek “holes”. Then it takes waiting time
(g+ 1) for the images to sweep ovék+ 2) holes. In other wordsfi(9+1) is the smallest iterate in which
the image oby sweeps ovetk+ 2) holes. To be precise, among the neighborhoods defined abeveep
track of which is the “smallest” one containing the imagegf

In first (g— 1) iteratesay gets rotated till it becomes i.e., f91(ag) = a;. In two iterates that follow:

f9(ag) C A (aghyCq) , 19 (ag) C A (Cyag-1Dg-1Cg-1)-

In the same manner, continuing the iterations, notice that:

f29 Y (ag) C A (Cyy-1Cg-18g-2Dg—2Cg—2Dg3Cg-3) -
£39Y (ag) C A (cgbg-1Cg-18g-2Dg2Cg-2 - 8g-aby-4Cgabg-5Cg-s)

We observe that after eadi¥*! iterates the subscript far rightmost inside #* decreases by 2. In other
words, it requiregg+ 1) iterates to increase the “complexity” of the imageaghy 2. Here, we abbreviate
notation as follows:

N (Cg* Cg—2iy1) i= A (Cgbg—1Cq—18g-—2Dg—2Cy—2 - - - g—2i+ 2By 21 2Cq—2i+2Dg—2i+1Cg—2i+18g-i)
Then, we have

f9*(ag) C A (Cg*Cg-1),
f29" 0 (ag) C A (Cg* Cg-3)
f30" ) (ag) C A (Cg* Cg-5)

g1
fL52 J(g+1)(ag) cN (Cg*cg—ZLg%lHl) .

Finally,

f9-1 (ftg%lj(g-%l)(ag)) % <p—1 (Cg*cg—zlg;zlprl) b303b202> 7

where the inclusion is into a smaller neighborhood i even.

11



Notice that.4 (p*l (cg*cg_ztg%lHl) b3c3b202), and hencef9-1 (ftg%lj(gﬂ)(ag)), is disjoint from
ar, and of cours@; anday are disjoint. Hence

dy (ag7 fk(ag)) <2,

where

(9-D+©-2(9+1) _gF+9-4

k=(g-1+197)g+1)> 2 . S

O

More generally, as described in Appendix 5.2 of [Tsa09], thae: similar to [Pen91] constructs pseudo-
Anosov homeomorphisms of certain punctured surfaces fre@ugio-Anosov homeomorphisms of closed
surfaces. We start with the Penner pseudo-Anosov fmafthe closed surfacg;. We add in punctures in
some or all of the complementary regions according to therai of Theorem 3.1 in [Pen88]. Then, the
restriction off is a pseudo-Anosov on the punctured surface. A proof sindl@aheorem 6.1 provides upper
bounds orlLy (Mod(Syn)) of the order ¥x(Sn)2. We list the cases in which we get(S;n)? type upper
bounds:

1. For punctured tori witln even: we use the example in Appendix 5.1 of [Tsa09].

2. Forg>=5andn=g—1or Z— 2: we use Example 3 in Appendix 5.2 of [Tsa09] .
3. Forg> 3 andn < 4: we use Example 2 in Appendix 5.2 of [Tsa09] .
4

. Forg>2andn=1, 2,9, g+ 1 org+2: We use Penner’s example in Theorem 6.1, puncturing the
surface at the appropriate points.

In some cases, the upper bound can be of the ordey|gf(%;n)|. For example, wheg = 2 andn is
varying, the example in Section 4 of [Tsa09] gives the bound

20
Ls(Mod <—,
«(Mod(Syn)) < ==,
for all n > 4. We propose the following conjecture:

Conjecture 6.2. For fixed g> 2 and n varying, ky(Mod(S;)) is of the order ofm as n— oo,
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