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The effect of tube spacing on the vortex shedding characteristics and fluctuating forces in an inline cyl-
inder array is studied numerically. The examined Reynolds number is 100 and the flow is laminar. The
numerical methodology and the code employed to solve the Navier–Stokes and continuity equations
in an unstructured finite volume grid are validated for the case of flow past two tandem cylinders at four
spacings. Computations are then performed for a six-row inline tube bank for eight pitch-to-diameter
ratios, s, ranging from 2.1 to 4. At the smallest spacing examined (s = 2.1) there are five stagnant and sym-
metric recirculation zones and weak vortex shedding activity occurs only behind the last cylinder. As s
increases, the symmetry of the recirculation zones breaks leading to vortex shedding and this process
progressively moves upstream, so that for s = 4 there is clear shedding from every row. For any given
spacing, the shedding frequency behind each cylinder is the same. A critical spacing range between 3.0
and 3.6 is identified at which the mean drag as well as the rms lift and drag coefficients for the last three
cylinders attain maximum values. Further increase to s = 4 leads to significant decrease in the force sta-
tistics and increase in the Strouhal number. It was found that at the critical spacing there is 180� phase
difference in the shedding cycle between successive cylinders and the vortices travel a distance twice the
tube spacing within one period of shedding.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flow around a group of cylinders is very often encountered in
engineering practice. For example, tube banks are widely em-
ployed in process industries and especially in the power generation
and oil industry (heat exchangers in boilers or nuclear reactors, off-
shore risers, etc.). Other applications include flow around hollow
fiber arrays with many applications in absorption, extraction and
ultra-filtration [15] or paper machine forming fabrics [6]. In the
latter examples the flow is laminar with Reynolds number in the
order of 150–200.

The flow across a group of cylinders is very rich in fluid dynam-
ics phenomena. Even for the flow around two cylinders, Sumner
et al. [29] identified nine different flow patterns depending on
the angle of incidence and spacing between the tubes. Complex
flow dynamic phenomena such as reattachment of shear layers, in-
duced separation, vortex synchronisation and impingement or vor-
tex pairing, splitting and enveloping were observed. There are
numerous other papers, experimental and computational, on the
flow around two cylinders: [1,9,19,22,30,33] to cite just a few. In
the paper of Sumner et al. [30] there is a table that lists 23 exper-
ll rights reserved.
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imental studies. However, much fewer studies have been carried
out for more cylinders; Lam and Cheung [12] and Igarashi and Su-
zuki [7] investigated the flow around three cylinders while Lam
et al. [13,14] examined four cylinders. Recently simulations of
non-Newtonian power-law fluids at low Reynolds numbers over
a pair of cylinders in tandem have appeared [23].

On the other hand, a lot of experimental and numerical work
has been carried out in flows around tube bundles that consist of
a large number of tubes. There are many array configurations, such
as inline [11,34,35], staggered symmetric [2,3], rotated square
[25,28,32], normal triangle [20,24], parallel triangle [25,36], etc.

One of the first attempts for a systematic analysis of shedding
phenomena that affect tube vibration was that of Owen [21]. He
found that the dominant frequency of vibration in a bank of tubes,
for which the non-dimensional transverse spacing lies between
1.65 and 5, is equal to the interstitial gas velocity divided by twice
the distance between successive rows in the streamwise direction.
Later Weaver et al. [31] found that the Strouhal number evaluated
using this hypothesis matches quite well the experimental data for
square inline arrays with pitch ratio from 1.2 to 3.0. Ziada and
Oengören [34,35] have studied the vortex shedding characteristics
in inline arrays with small, intermediate and large spacings. They
found that the vorticity shedding phenomenon in the small (less
than 1.5) and intermediate (between 1.75 and 2.7) spacings is gen-
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erated by the symmetric instability of the jet issuing from the flow
lanes between adjacent tube rows. They call this the ‘‘global insta-
bility mode”. For bigger spacings (larger than 2.7) vortex shedding
can occur at either the ‘‘global jet mode” or the ‘‘local wake mode”.
In the latter mode, the shedding in each row becomes independent
from the shedding at adjacent rows, as would be expected for ar-
rays with large transverse spacings.

For many practical applications, especially in the power gener-
ation industry from solid fuels (coal, lignite, etc.), the heat
exchangers above the combustion zone have wide spacings in
the cross-stream direction in order to avoid blockage of the gas
lanes due to fouling from ash deposits on the tube walls. Konstan-
tinidis et al. [11] studied experimentally the flow in such an inline
tube bundle with spacings 2.1 � 3.6 in the streamwise and trans-
verse directions, respectively. Flow visualisation showed that there
is 180� phase difference between successive rows. For example,
when the shear layer from one cylinder folded toward one side,
the shear layer from the downstream cylinder folded on the oppo-
site side. They mention that this synchronisation of vortex shed-
ding was the reason for a well defined frequency in the bundle.

To the best of our knowledge this synchronisation of vortex
shedding in multiple cylinder arrays, and most importantly its
implication on the mean and rms forces acting on each cylinder,
has not been studied so far. Previous LES simulations of inline tube
arrays by Hassan and Ibrahim [5] did not report this phenomenon
possibly because the square arrays studied were closely packed
(spacings 1.4 and 1.5). The aim of this paper is therefore to fill this
gap. It is clear that more than two cylinders are needed to capture
this phenomenon and in the present study six cylinders in tandem
are examined. The effect of spacing on the vortex shedding charac-
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Fig. 1. Computational domain and boundary conditions for two cylinders in-
tandem.
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Fig. 2. Computational domain and boundary conditions for a six-row inline tube
bank.
teristics and the values of the mean/rms of lift and drag coefficients
is examined in detail. The results are directly transferable to inline
tube arrays with large spacings in the cross-stream direction.

The paper is organised as follows. Section 2 provides details on
the numerical approach and solution method employed. In order to
validate the methodology and computer code employed, Section 3
presents comparison with the results of Sharman et al. [27] for the
laminar flow past two cylinders in tandem. Results for the inline
array consisting of six rows are presented and discussed at Section
4. Finally, Section 5 summarises the main findings of this work.

2. Numerical approach and solution method

The incompressible Navier–Stokes equations are written in ten-
sorial Cartesian form as:
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Fig. 3. Zoomed-in view of the computational mesh for the 2-cylinder arrangement
with s = 4.0: (a) coarser mesh and (b) finer mesh.

Fig. 4. The computational mesh for the inline tube bank with s = 3.2.



Fig. 5. Instantaneous streamlines for two cylinders in tandem with: (a) s = 2, (b) s = 2.5, (c) s = 3.6, and (d) s = 4.0.
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Fig. 6. Statistical forces for two-in-tandem cylinders at different spacings; comparison with the data of Sharman et al. [27] and the values for a single cylinder.
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where the indices (i, j = 1,2,3) represent the three directions in a
Cartesian coordinate system, ui is the flow velocity in the ith direc-
tion, P is the pressure, q the fluid density and m the kinematic
viscocity.

The finite volume method applied on an unstructured, collo-
cated grid arrangement is employed to discretize the above equa-
tions. The developed in-house code has been used in the past to
simulate successfully bluff body flows, such as the 3D pulsating
flow over a single circular cylinder at Reynolds number 2580
[17] and the flow in a staggered tube array [16] using the LES tech-
nique. All spatial terms in the momentum equations are discret-
ized using the second order central differencing scheme (CDS)
while the second order accurate Crank–Nicolson method is em-
ployed to advance them in time. The pressure term is treated fully
implicitly, i.e. evaluated at the new time instant. The PISO scheme
Issa [8] is used to deal with the pressure-velocity coupling between
the momentum and the continuity equations. In order to avoid the
check-board pressure field, the velocity interpolation method at
the cell faces proposed by Rhie and Chow [26] is employed.

A convective boundary condition o/
ot þ Uconv

o/
ox ¼ 0 is used for the

exit boundary, where Uconv is the velocity normal to the outlet
boundary and / is any physical variable that is convected out of
the domain. No-slip conditions are used for the cylinder walls.
The normal derivative for the pressure correction is set to zero at
all boundaries.

All simulations are two dimensional because the Reynolds
number (defined as Re ¼ U1d

m ) is equal to 100, i.e. not sufficiently
large to excite three dimensional effects. Therefore, in the span-
wise direction, only one computational cell is used and symmetry
boundary conditions are applied. The simulations start with a zero
velocity and pressure field, the flow is allowed to develop for



Fig. 7. Instantaneous streamlines past the inline tube bank with: (a) s = 2.1, (b) s = 2.3, and (c) s = 2.5.
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around 20 shedding periods and then statistics are collected for
more than 10 cycles.

Fig. 1 shows the computational domain for the two cylinders in-
tandem arrangement used for validation purposes and Fig. 2 the
domain for the six row inline array. The non-dimensional spacing
s is defined as s = SL/d, where SL is shown in Fig. 1 and d is the diam-
eter of the cylinder. For all cases examined the inlet boundary is lo-
cated 16d upstream of the first cylinder and the exit boundary 32d
downstream from the center of the last cylinder. The upper and
lower boundaries are placed at 16d away from the row of cylin-
ders, giving a blockage ratio 3.1%.

For the two-cylinder case, four spacings were examined (2,
2.5, 3.6 and 4). Grid independence calculations were performed
for the largest spacing s = 4 with two meshes consisting of
29,808 and 70,064 cells. A zoomed-in view of the coarser mesh
is shown in Fig. 3(a). Blocks with dimensions about [2D � 2D]
around each cylinder were meshed with O-type grids and
orthogonal cells filled the rest of the domain. Along the periph-
ery of each cylinder 160 cells were uniformly distributed. This is
higher even compared to the number of cells used along the sur-
face in the finest mesh of [27], which was equal to 120. A con-
stant expansion factor 1.03 was used for the cell spacings in the
radial direction away from the cylinder wall. The smallest cell
thickness in the radial direction was Drmin/d = 4 � 10�3. This is
comparable to the value 1.25 � 10�3 of the finest mesh used
by [4] for LES (with no-slip boundary conditions) around a single
cylinder at a much higher Reynolds number (3900). The cells in
the gap between two successive cylinders have normally the
largest size, about 0.05d. The finer mesh with 70,064 cells was
produced by doubling the number of control volumes in each
direction in the blocks surrounding the cylinders and in the
gap area (Fig. 3(b)). As will be shown in the next section, there
are small differences in the results obtained from these two
meshes.

For the six-tube arrangement, the mesh was again constructed
by connecting together individual blocks around each cylinder.
The level of resolution for each block corresponds to Fig. 3(a).
The total number of cells varied between 72,230 and 179,604



Table 1
Strouhal number behind each cylinder of the inline tube bank.

Ratio s Strouhal numbers for vortex shedding after each cylinder

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5 Cylinder 6

2.1 – – – – – 0.08
2.3 – – – 0.0875 0.0875 0.0875
2.5 – – 0.0918 0.0918 0.0918 0.0918
2.8 – 0.1 0.1 0.1 0.1 0.1
3 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001
3.2 0.104 0.104 0.104 0.104 0.104 0.104
3.6 0.109 0.109 0.109 0.109 0.109 0.109
4 0.1502 0.1502 0.1502 0.1502 0.1502 0.1502

Fig. 8. Variation of Cd against s for each cylinder.
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depending on the spacing. Fig. 4 shows the computational grid for
for s = 3.2 that contains 120,836 cells.

Around 16 iterations are required for convergence of the
equations within each time step to within a prescribed toler-
ance of 10�3 for the normalised residuals. The simulations
were carried out on a DELL Workstation 490, with Dual pro-
cessor Xeon 3.06 GHz and 4 GB of RAM. The calculations were
serial and one case takes around 75 h in total (including the
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time to develop a steady and repeatable vortex shedding
pattern).

3. Flow around two cylinders in tandem (validation study)

The unsteady flow past two cylinders in tandem was computed
first. This is an excellent case for the validation of the employed
methodology and computer code. It serves also as an ‘‘introduc-
tion” to the flow behind more cylinders. Computations were car-
ried out for four values of s (2, 2.5, 3.6 and 4) as already mentioned.

Snapshots of instantaneous streamlines are shown in Fig. 5. The
simulations show that for s = 2 there is no distinct vortex shedding
in the gap between the two cylinders and a stagnant symmetric
vortex pair develops instead. The flow behind the second cylinder
is found to be bimodal; the numerical simulation predicts a pair of
symmetric vortices but when an artificial asymmetric perturbation
is imposed for a short interval, vortices start to shed off as evi-
denced in Fig. 5(a). The Strouhal number predicted is 0.122. For
Fig. 9. Variation of C0d again
s = 2.5 the vortices in the gap are still symmetric and a small arti-
ficial perturbation was again imposed for a small time interval in
order to trigger vortex shedding behind the downstream cylinder
(Fig. 5(b)). For s = 3.6, asymmetries develop in the two gap vortices
(Fig. 5(c)) while finally for s = 4 there is clear shedding in the gap
(Fig. 5(d)).

The variation of the force statistics for both cylinders with s is
shown in Fig. 6. The mean drag coefficient of the first cylinder,
Cd;1, is smaller than the value for a single cylinder at Re = 100
(equal to 1.33 and shown with a dotted line in Fig. 6(a)) but it ap-
proaches this value for s = 4. For small values of s, the mean drag
coefficient for cylinder 2, Cd;2, is negative, i.e. the cylinder is
pushed upstream. The presence of negative drag coefficients is
well known and has been reported by Zdravkovich [33] among
others. The smallest value is obtained for s = 2 and then Cd;2 in-
creases gradually until 3.6 and then very rapidly between 3.6
and 4.0. The value at s = 4 is about one half of the value for a sin-
gle cylinder.
st s for each cylinder.
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For s 6 3.6, the rms values of drag and lift coefficients for the
first cylinder, C0d;1 and C0l;1, respectively, are very small because of
the aforementioned stagnant vortices in the gap region. The values
increase rapidly between s = 3.6 and s = 4. Although there is clear
vortex shedding behind the second cylinder for both s = 2 and
s = 2.5, it is very weak and so C0d;2 and C0l;2 are also close to zero.
Again the values increase rapidly from s = 3.6 to 4. The larger val-
ues of all force statistics at s = 4 are due to the clear shedding activ-
ity in the gap as shown in Fig. 5(d).

The effect of mesh on the results was examined for s = 4. There
were small differences; for example the mean Cd coefficients for
cylinders 1/2 were 1.30/0.68 and 1.28/0.71 for the 29,808-cell
mesh and 70,064-cell mesh, respectively. The values for the rms
Cl were 0.28/0.95 and 0.30/0.99 for the two meshes, respectively.
The Strouhal number was the same behind each cylinder and equal
to 0.150 (coarser mesh) and 0.148 (finer mesh).

In Fig. 6 the results with the fine mesh are shown. For all exam-
ined spacings there is generally good quantitative agreement be-
tween the present results and those of Sharman et al. [27]. The
Fig. 10. Variation of C0l agai
small differences are mainly attributed to the fact that the exam-
ined spacings were not identical. For example, the aforementioned
authors have studied s = 3, which was not examined in the present
paper, and this can explain the small deviation in Fig. 6(a). Another
source is the inevitable error from reading the data from the graphs
of the paper of Sharman et al. [27].

In summary, the study of the laminar flow past two cylinders
in-tandem demonstrates that there is vortex shedding behind the
downstream cylinder for all examined spacings. In the gap be-
tween two cylinders, there are two symmetric stagnant vortices
for s = 2 and 2.5. For s = 3.6 the two vortices become asymmetric
and unstable and vibrate with a relatively small amplitude. There
is clear vortex shedding in the gap for s = 4 leading to large in-
creases in the rms values of the forces.

4. Flow past an in-line tube bunk

Attention is now turned to the in-line tube bunk that consists of
six cylinders.
nst s for each cylinder.
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4.1. Development of vortex shedding and force statistics

The instantaneous flow field for the six-cylinder array is af-
fected enormously by the tube spacing. Fig. 7 shows instantaneous
streamline patterns for s = 2.1, 2.3 and 2.5. For the smallest value
s = 2.1, there are five symmetric recirculation zones while the flow
behind the sixth cylinder exhibits a weak vortex shedding with
Strouhal number 0.08. For s = 2.3 there are still three stagnant sym-
metric vortex formation zones but a stronger asymmetry develops
in the last three cylinders as can be seen in Fig. 7(b). For s = 2.5
there are two nearly symmetric stagnant vortices formed in the
first two gaps. In the gap between third and fourth cylinders, two
vortices still co-exist as shown in Fig. 7(c), but the strong asymme-
try has developed to distinct vortex shedding (unique Strouhal
number 0.0918). From these patterns it can be seen clearly that
Fig. 11. Variation of the instantaneous lift coefficient
asymmetries develop in the recirculation zones, starting from the
downstream cylinders and, as s increases, they propagate upstream
leading to vortex shedding activity from more and more rows. This
behaviour is very similar to that observed previously in the two-
cylinder arrangement. Table 1 summarises the Strouhal numbers
for all the examined arrangements. The frequency is the same for
all cylinders shedding vortices, giving a unique Strouhal number
for every arrangement.

Fig. 8 shows the variation of the mean drag coefficients for all
cylinders against spacing, s. Eight values of s were examined 2.1,
2.3, 2.5, 2.8, 3, 3.2, 3.6 and 4. It is clear that the cylinder spacing
has a large impact on the drag values. For all cylinders the mean
drag coefficient, Cd, is smaller than the value for a single cylinder.
For the first two cylinders in particular the variation of Cd with s is
very similar to the previously examined 2-cylinder case. The mean
with time and definition of phases A–D (s = 3.6).
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drag coefficient for the third cylinder Cd;3 is always positive and in-
creases almost linearly with s as shown in Fig. 8(c). For the last
three cylinders, the variation of Cd with s shows many similarities,
which indicates that after the third cylinder a periodic pattern
starts to develop. The values are positive, increase up to a value
0.65–0.8, remain at high levels in the spacing regime s = 3.0–3.6
and then drop suddenly.

Fig. 9 shows rms drag coefficients for all six cylinders. There is a
smooth increasing trend for the first cylinder, C0d;1, and the values
are of the same order to the value of the single cylinder. The level
of rms drag coefficient for cylinder 2 increases suddenly between
s = 3.6 and 4 but cylinder 3 has a more smooth increasing trend.
Fig. 12. Streamlines at p
The last three cylinders show again a similar pattern: C0d increases,
reaches high values (0.12–0.2) compared to a single cylinder in the
region s = 3.0–3.6 and then decreases sharply at s = 4.

Fig. 10 shows the rms lift coefficients for all six cylinders. The
trends for the first two cylinders are similar to the validation case.
For the other four cylinders we can see again the same pattern as
for the other two force statistics: smooth increase for cylinder 3
and increase, plateau, decrease for cylinders 4–6. The maximum
values of C0l attained (0.6–0.7) are almost three times larger com-
pared to a single cylinder.

Obviously non-zero values of C0l, C0d are due to the unsteadiness
of the flow. The small values of these coefficients for small spacings
hases A–D (s = 3.6).
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can be explained by the weak vortex shedding activity behind the
rows as evidenced earlier in Fig. 7. More interesting is the maximi-
sation of the rms forces in the region s = 3.0–3.6 and then the sud-
Fig. 13. Pressure contours a
den drop for s = 4. Analysis of the instantaneous flow patterns can
shed light into the dynamics of the flow and can help to explain the
observed behaviour. This is examined in the next section.
t phases A–D (s = 3.6).



Fig. 14. Vorticity contours (a) s = 3.6 (at phase B) and (b) s = 4 (at phase B).
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4.2. Analysis of the instantaneous flow field for s = 3.6 and 4

In this section a comprehensive analysis of the instantaneous
streamlines, pressure and vorticity patterns will be carried out
for the two spacings 3.6 and 4.0. The patterns will be correlated
with the instantaneous values of the lift coefficient for all cylin-
ders in order to provide a more comprehensive picture of the
flow.

Fig. 11 shows the variation of the instantaneous lift coefficients
for a vortex shedding period for s = 3.6. The Strouhal number is the
same for all cylinders in the bank and equal to 0.109. In the last
three cylinders, for which as we have seen a repeatable pattern
tends to be established, the lift variation indicates a strong phase
difference (almost 180�) in the vortex shedding between adjacent
rows. However, between the first two cylinders the phase differ-
ence is much smaller and increases rapidly between the second
and third cylinder.

Four time instants, denoted with the letters A–D, are marked in
this figure and snapshots of streamlines at those instants are
shown in the following Fig. 12. In the gap between the cylinders
1 and 2, two non-symmetric, vibrating, recirculation zones are
present and this can explain the low Cl values in Fig. 11(a). Let us
examine in more detail the flow behind the last three cylinders.
It can be clearly seen that the same fluid stream passes alterna-
tively from the top and the bottom of successive cylinders. The
stream is deflected by the vortex shedding activity behind each
cylinder leading to wide oscillations in the frontal angle of
impingement. This in turn leads to large variations in the lift coef-
ficient with time and therefore to high rms values. As an example
let us focus on phase C. It is clear from the direction and angle of
impingement of the flow stream that the lift coefficient will be po-
sitive–negative–positive for the cylinders 4, 5 and 6, respectively.
This is confirmed by looking at Fig. 11(d)–(f). Similar conclusion
about the signs of the lift coefficients can be obtained by scrutiniz-
ing the other phases and cylinders and checking with the actual
values in Fig. 11. In a single cylinder the variation of lift and drag
are associated with the unsteady wake behind it. For multiple cyl-
inder configurations, however, the interaction of the wakes must
be examined in order to explain the observed behaviour of the
forces in one period.

The pressure distribution around each cylinder for the same
four time instances is shown in Fig. 13. This pattern can be corre-
lated with the corresponding streamlines in the previous figure.
The high pressures at the impingement points but also the low
pressures (due to Bernoulli effect) in the areas around the periph-
ery where the flow stream accelerates are clearly visible. Note that
these features have an additive effect on the lift. In order to see this
let us focus again on phase C and in particular the fourth cylinder.
Both the jet impingement from below and the low pressure due to
flow acceleration at the top lead to high positive Cl value. Beyond
the end of the array, strong negative pressure regions clearly
demarcate the vortices shed by the last cylinder. It is interesting
to see that the distance between those vortices behind the array
is equal to the tube spacing, i.e. the vortices that are in phase are
a distance 2s apart.

The vortex shedding pattern in phase B is shown in Fig. 14(a).
Similar patterns are observed for the other phases as well. The
180� phase difference between successive rows (after the third cyl-
inder) is clearly visualised. The overlapping of the vortex centers
and the low pressure regions from the previous Fig. 13(b) is also
evident.

For the shedding pattern described in the previous paragraphs
to take place, the distance traveled by a vortex within one period
should be equal to twice the distance between the tubes. This
means that the time period is given by

T ¼ 2SL

Uc
¼ 2sd

Uc
ð3Þ

where Uc is the vortex convection velocity (also known as vortex
celerity). From this equation the Strouhal number can be evaluated
as

St ¼ d
TU1

¼ Uc

U1

1
2s

ð4Þ



Fig. 15. Variation of the instantaneous lift coefficient with time and definition of phases A–D (s = 4).
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For the flow around a single cylinder the vortex celerity has been
studied by many investigators. Data from various sources were
compiled by [10]. They found that for low Reynolds numbers
(300, 360) the vortex celerity in the wake depends on the distance
from the cylinder; it is smaller in the near field and larger in the far
field. In the far field, all the studies examined show a value of 0.8U1
irrespective of the Reynolds number. A similar value (0.78U1) is re-
ported by [18] for Re � 21,400 for a rectangular cylinder. It was not
possible to find in the literature values of convection velocity for
tube bundles. However, this can be easily estimated by identifying
one vortex and then tracing its location in the different phases. This
was carried out for phases A–D and the vortex celerity was found to
be the same between two successive phases and equal to around
0.8U1. It is interesting to see that this agrees with the aforemen-
tioned value for a single cylinder in the far field. Using this value
in the previous Eq. (4) and substituting s = 3.6 we find that the pre-
dicted Strouhal number is equal to 0.111. This value is very close
(difference less than 2%) to the one calculated numerically by Four-
rier transform and reported in Table 1.

Let us now turn our attention to s = 4. The variation in the lift
coefficient is shown in Fig. 15. There is a phase difference between
the signals in rows 4–6 but it is much smaller compared to the pre-
vious spacing. This is reflected in the instantaneous flow patterns
shown in Fig. 16. It can now be seen that because of the increased
spacing between the cylinders, the fluid stream has the available
space to make a U-turn within the gaps due to the action of the
vortices. This means that in most time instances the flow passes
from the same side of two successive cylinders (for example from
the top for cylinders 3 and 4 in phase C or from the bottom in phase
A). In other instances, for example in phases B and D, the flow
passes alternatively from opposite sides. The fact that the flow
has the space to make a U-turn reduces significantly the phase



Fig. 16. Streamlines at phases A–D (s = 4).
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difference as the local approaching flow is the same for two succes-
sive cylinders.

The vortex shedding pattern is shown in Fig. 14(b). The same
minimum and maximum values are used in order to be able to
compare the vortex strength between the two spacings, 3.6 and
4. The comparison clearly indicates a reduced vortex strength
and therefore reduced pressure variations and rms lift are ex-
pected. It is believed that the reduced vortex strength is due to
the lack of velocity acceleration around cylinders. For this arrange-
ment, the distance between two cylinders is large and the vortex
motions are no longer synchronised with the spacing. This results
in a significant change in the Strouhal number. For this spacing it is
significantly increased as shown in Table 1 and it approaches the
value of a single cylinder (equal to 0.165).

5. Conclusions

This paper studies the effect of tube spacing on the flow charac-
teristics for a six-row inline tube bank under laminar flow condi-
tions. The numerical method is first validated for laminar flow
past two-in-tandem cylinders and the predicted force statistics is
in excellent agreement with the results of Sharman et al. [27]. Fol-
lowing the validation study, the flow in a tube array consisting of
six cylinders at various spacings in tandem is examined. Increase
of the spacing makes the flow more asymmetric and induces vor-
tex shedding starting from the last cylinder and proceeding up-
stream. It was found that for the last three cylinders the force
statistics are maximised in the spacing region 3.0–3.6 and then
drop rapidly at s = 4. The instantaneous flow patterns for s = 3.6 re-
veal an antisymmetric vortex shedding activity, i.e. there is 180�
phase difference from one cylinder to the next and during one per-
iod the vortices travel a distance twice the tube spacing. For s = 4,
the vortices become much weaker, the strong antisymmetry disap-
pears, and the vortex motion is no longer synchronised with the
spacing leading to reduced rms forces.
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