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ABSTRACT 
The aim of this paper is to explore the key 
influences of the wall stiffness on the stability and 
self-excited oscillations of the flow in collapsible 
channels.  To identify mechanism of the oscillations 
found in the full numerical solutions, a linear 
eigenvalue problem of the Orr-Sommerfield 
equations modified by the beam is solved. Excellent 
agreement is found between the onset of small 
amplitude oscillations in the full numerical 
simulations and the neutral stability curves from the 
eigenvalue problem. If the neutral stability curve is 
shown in the dimensionless pre-tension and wall 
stiffness space, there appears to be a "stability 
zone" inside an unstable region as either the pre-
tension is reduced, with the wall stiffness fixed, or 
the tension fixed, and the wall stiffness is reduced.  
Further investigation of this "stability zone" over a 
wider range of parameters led to the conclusion 
that the pre-tension and the wall stiffness of the 
beam do not play independent roles in the linear 
stability of the system. Instead, the final tension, 
which is brought about by a combination of the pre-
tension, wall stiffness and wall deformation is found 
to be the dominant factor in this system.  A physical 
explanation of the existence of this stability zone is, 
however, still lacking.  

1. INTRODUCTION 
Flow in collapsible tubes has been extensively studied in 
the last few decades not only for its relevance to 
physiological applications, but also because of the 
interesting fluid-structure interactions that occur 
(Shapiro,1977; Grotberg & Gavirely,1989; Kamm & 
Pedley, 1989; Jensen,1990;  Davies & Carpenter, 
1997ab; Heil,1997; Matsuzaki, 1995). Self-excited 
oscillations are frequently observed in a Starling resistor 
made from such a system in the laboratory 
(Bertram,1982; Bertram,1990). Such oscillations have 
also been obtained from certain one-dimensional models 
(Jensen,1990), as well as in a two-dimensional fluid-

membrane model (Luo & Pedley, 1996) which may, in 
principle, be realized in a laboratory. 
 
The fluid-membrane model, however, suffers from 
several ad hoc approximations: the extensional and 
bending wall stiffness was ignored,  and the elastic wall 
was assumed to move either in the vertical or in the  
normal direction. Although these may be adequate for 
steady flow simulations, their influence on unsteady 
flows, especially on the self-excited oscillations, needs to 
be carefully evaluated.  
 
This paper studies the stability of a new fluid-beam 
model in which the solid mechanics of the wall is taken 
into account. Stability of a plane channel flow between 
compliant walls has been studied previously by a number 
of people (Green & Ellen, 1972; Davies, 2003).  
However, most of these studies considered flow in a 
long, parallel-sided channel, so in the basic state the 
steady flow is unidirectional and the elastic walls are 
planar. This should be contrasted with the present case, 
in which the steady flow, from which the oscillations 
grow, involves a large deformation of the wall and 
separation of the flow.  These same steady solutions are 
also used as the basic state steady solutions for a linear 
stability analysis.  This allows us to compare the 
eigenvalues from that analysis with the frequencies 
obtained from the full numerical results.  In addition, we 
are able to follow the oscillations from their linear onset 
to the non-linear large-amplitude stage. 
 

 

2. THE FLUID-BEAM MODEL   
 

2.1  The model configuration 
The model consists of a steady flow in a channel in 
which a part of the upper wall is replaced by an elastic 
beam, see figure 1.  The rigid channel has width D, a part 
of the upper wall with length $L$ is replaced by a pre-
stressed elastic beam subjected to an external pressure pe.  



Proceedings of the 8th international conference on Flow Induced Vibrations         Ecole Polytechnique, Paris, 6-9th July  
(Eds: E. de Langre and F. Axisa) Vol.II,  FIV2004 
Lu and Ld are the lengths of the upstream and 
downstream rigid part of the channel. Steady Poiseuille 
flow with average velocity U0 is assumed at the entrance. 
The flow is incompressible and laminar, the fluid having 
density ρ  and viscosity μ.    The extensional and 
bending stiffness of the beam are EA and EJ 
respectively, where E is the Young's modulus, A is the 
cross-sectional area of the beam, and J is the bending 
moment. The pre-tension in the beam (caused by an 
initial stretch of the beam) is T and the density of the 
beam is ρm. Damping and rotational inertia of the beam 
are both neglected. 
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Figure 1:  The flow-beam configuration (not to scale).  
Part B has part of the wall being replaced by an elastic 
beam.  

2.2 The governing equations 
For convenience, we introduce non-dimensionlized 
variables as follows: 
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where variables with star are non-dimensional ones 
which will be used throughout this paper.  In the 
following, however, the stars are dropped for 
simplicity.  
 
The dimensionless governing equations for the system 
are thus:  for the beam:  
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  where the superscript ‘ denotes differentiation with  
  respect to l.    And for the fluid: 
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where the superscript prime represents derivative with 
respect to the initial beam position l.   Notice that as 
both cκ and cλ 0,  we recover the fluid-membrane 
model (Luo & Pedley, 1995).  In this study, we choose 
cλ=10-5cκ (i.e. the tube wall is thin).  

→

 
Boundary conditions for the flow field are chosen such 
that steady parabolic velocity profile is used for the 
inlet flow, the stress free condition for the downstream 
outlet, and the no-slip condition is used along the walls 
including the elastic section.  Clamped conditions are 
used for the beam ends. 

3. NUMERICAL METHOD  
   A finite element code for unsteady flow is developed to 
solve the coupled nonlinear fluid-structure interactive 
equations simultaneously, and an adaptive mesh with 
rotating spines is used to allow for a movable boundary.  
The mesh is divided into three subdomains, one of which 
is placed with many spines originating from the bottom 
rigid wall to the movable beam, see figure 1.   
    These spines are straight lines, which can rotate 
around the fixed nodes at the bottom.  Thus all the nodes 
on the spines can be stretched or compressed depending 
on the beam deformation. A numerical code is 
developed to solve the fluid and the beam equations 
simultaneously using weighted residual methods  
    A Petro-Galerkin method is used to discretise the 
system equations (1)-(7). The element type for flow is 
six-node triangular with second order shape function Ni 
for u and v, and linear shape function Li for p.    Three-
node beam elements with second order shape function 
are used for x, y, θ, λ and κ.   The discretized finite 
element equations can be written in a matrix form as  

m
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where U =(uj, vj, pj, xj, yj, θj, λj, κj) is the global vector of 
unknowns, and j=1,…n, is the nodal number.  R is the 
overall residual vector.   
   An implicit finite difference second order predictor-
correct scheme with a variable time step is used to solve 
the time dependent problem. At each time step, the 
frontal method and a Newton-Raphson scheme are 
employed to obtain the converged solution for the whole 
system simultaneously.     
  

4. LINEAR STABILITY ANALYSIS 
  
As our numerical perturbations to the steady solutions 
are not strictly infinitesimal, we cannot say that the small 
amplitude oscillations are due to linear instability of the 
system. To investigate this, we now solve the eigenvalue 
problem of the linearized finite element equations, which 
is essentially the discretised Orr-Sommerfeld eigenvalue 
system, modified by the beam. 
 
We denote the infinitesimal perturbation by  , so 
that   

UΔ
U U U= +Δ  is still a solution to the system.  

Here U  is the steady solution obtained from the full 
numerical simulations.  If the system is stable, then  U  
should approach U   as time increases. As in standard 
linear stability analysis,   can be written in the form  UΔ

tU e UωΔ = .  Substituting this into (8) we obtain a 
matrix eigenvalue equation for the complex eigenvalues 
ω and eigenvectors U : 
                 ( )M K U Rω + = =
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0                    (9) 
 where the matrices with a bar are determined by the 
steady solution U .    The eigenvalue matrix equation (9) 
is solved by using a QZ algorithm.   The neutral stability 
curves obtained from solving (9) are shown in figure 2.   
It can be seen that the results from the stability analysis 
are in excellent agreement with the small amplitude 
oscillations calculated numerically. The points marked as 
S1, S2... came from the full numerical solutions 
discussed earlier, and they are all located extremely close 
to the neutral stability curves. The frequencies of these 
small amplitude oscillations also agree very well with the 
linear stability prediction. 
 
In general, all the unstable solutions are located below 
the neutral curve I.  This makes sense, as the system 

 
Figure 2 The neutral stability curve obtained from the 
eigenvalue solution. The shaded areas are unstable 
regions, and the white area is steady region.  
 
 
tends to be more unstable for smaller tension or wall 
stiffness. What seems to be surprising is that inside this 
area there is a band of stable solutions. This stable band 
divides the unstable area into two regions, the upper 
unstable region and the lower one.   For comparison, 
results for the corresponding membrane model are also 
shown in figure 2. 
 
We notice that the small amplitude oscillations have 
roughly the same frequency if they are located on the 
same neutral stability curve.   All these instabilities are, 
without exception, caused by mode 2 oscillations, each 
with a wavelength of one. The wall shapes of the 
solutions along each of the three curves are extremely 
similar to each other.    
 
  

5. DISCUSSION 
Figure 2 poses two interesting questions:  why does a re-
stability zone exist in the T- cλ space?  And why is there 
a frequency coincidence for oscillations with very 
different wall structural properties?  Here we will make 
an attempt to answer these questions. Let us first 
examine the effects of T and cλ for a wider Reynolds 
number range.    The corresponding neutral stability 
curve for Re=1-600 are shown in figure 3. Again, we 
note that all the neutral stability points are mode-2 
oscillations. On the left hand side of the curve, all the 
solutions are stable, on the right hand side of the curve, 
the solutions are unstable. Thus for this set of wall 
properties, the flow seems to reach its first neutral 
instability at about Re=200, and all solutions are unstable 
for Re beyond 500. 
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Figure 3 Neutral stability curve of mode-2  in the T- Re 
space for cλ=600.  
 
Figure 3 shows that the ``stability zone'' observed in 
figure 2 is a manifestation of the stable tongue in the 
convoluted mode-2 stability curve; note the points S8, 
S9, S10 in both figure 3 and figure 2. The corresponding 
T-Re plot for cλ=1 (not shown) is not convoluted and 
does not have a stable tongue; this is consistent with 
figure 2.  Such a tongue is also absent for cλ=932.5, as 
expected from figure 2.  Thus the unexpected behaviour 
is not seen when the beam behaves like a membrane 
dominated by pre-tension T (cλ very small) or when its 
extensional (or bending) stiffness cλ  is dominant.  For 
the stable tongue to be seen both pre-tension T and 
stretching (or bending, since cκ is proportional to cλ) 
must play a role.  We may also note that interactions 
between modes of different wave number, as found by 
Jensen (1990) in a one-dimensional model, are excluded, 
since only mode-2 oscillations are observed here.  
  
Physical interpretation of these findings is not 
straightforward, especially when we recall that the non-
dimensionalisation of pre-tension means that T is 
proportional to Re2.  However, we can say that there is 
no correlation between the development of instability 
and the occurrence of flow separation downstream of 
the elastic section.  The latter occurs whenever the 
deformation is large, except at the lowest values of the 
Reynolds number (e.g. it does occur between S8 and S9 
at Re=300, but not for some points to the right of S11 in 
figure 3). 
 
Since flow separation is not crucial to instability, it may 
be instructive to compare our results with earlier work 
addressing the relative effects of bending stiffness and 
membrane tension in flow-induced instability of a 
compliant channel with walls that are initially planar, not 
deformed as in our case (Davies & Carpenter, 1997b).  

Their work suggests that the important structural 
properties which determine the system stability are 
tension and bending stiffness (the spring element in their 
model is absent here) for a massless wall.  Using our 
non-dimensional variables, their theory predicted that 
oscillation will occur with frequency: 
  2 2 2

2 2 2
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Note that cλ does not appear since the membrane tension 
is supposed to be large enough not to change during 
small amplitude oscillations. However, it is important to 
recognise that T in (10) is different from our tension, 
since the value of T of Davies & Carpenter refers to the 
total membrane tension, while we use the pre-tension of 
the beam, not the actual tension in the steady state.  The 
difference between these two definitions is negligible 
only when the wall deformation is small. The concept of 
the final tension, defined as  
  
 
has been discussed in detail by Cai & Luo (2003).  In 
order to make quantitative comparison with Davies & 
Carpenter's theory, we need to estimate the "equivalent 
membrane tension" (or the final tension) from our beam 
model.  Since the principal stretch λ varies along the 
beam, we estimate the final tension by calculating λ at a 
fixed station along the beam.  The estimated final tension 
is plotted in figure 4.  It is interesting to see that this 
curve is different from figure 3. The "stable tongue" has 
shrunk, and the slopes of its boundaries are positive, not 
negative.  Aspect of this curve can be explained by 
looking at the ratio of the stretch-induced tension 

nd the pre-tension, as shown in figure 5.  ( 1cλ λ − ,)  a

)( 1), (11finalT T cλ λ= + −                  

 
It can be seen that this ratio for the branches of the 
neutral curve running through S14 to S10, and through 
S15 to S11, is below unity, i.e., in these cases the pre-
tension is greater than the stretch-induced tension. 
However, the ratio is much greater than one on the other 
two branches starting from S14 and S15, respectively, 
corresponding to a much greater wall deformation.  It is 
worth pointing out that the stretch-induced tension in the 
branch passing through S8 is greater than in that passing 
through S9, which somewhat compensates for the fact 
that the pre-tension in the S9 branch is greater. The 
overall effect is thus to bring the gap between the 
two branches closer to each other in figure 4.  
 
Using the estimated final tension to calculate the 
frequencies from (10) , we obtain the frequencies of the 
neutrally stable oscillations according to Davies & 
Carpenter's membrane model. The corresponding mode- 
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Figure 4 The neutral stability plotted as the final tension.  
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Figure 5 The neutral stability curve plotted as the ratio 
of the stretch induced tension with the pre-tension.    
 
2 frequencies of our neutrally stable solutions are also 
computed. The results are shown in figure 6. It is highly 
interesting to see that their model gives a neutral curve 
with qualitatively similar shape to ours. However, the 
"stability zone" between S8 and S9 is even narrower 
accordingly to their model. This is confirmed by our 
further calculations of the neutral stability curve for 
cλ=1, where membrane effect is dominant, and no stable 
tongue was revealed. 
 
Interestingly, predictions from even simpler linear 
stability theories for a stretched membrane with or 
without mean flow (Eq.(17) and (19) in Luo & Pedley, 
1998, respectively) also indicated the same features: i.e., 

 
Figure 6 Comparison of the frequency calculated from 
our results and the previous linear theories.    
 
there is still a narrow stable tongue, in a curve of similar 
shape: see figure 6. This strongly suggests that the final 
tension, be it the membrane tension, or the beam tension 
caused by the combination of pre-tension and wall 
stretch, is the dominant factor in the stability mechanism 
of this system. Of course, in the beam model, this final 
tension is not known a priori, and its precise value 
depends on the solution of a large-deformation fluid-
structure interaction problem. Hence, unless for a small 
wall deformation (as assumed by most of the linear 
stability analyses), this key control parameter cannot be 
easily estimated from a beam model. 
 
We may now explain the frequency coincidence on the 
three neutral stability curves in figure 2.   The reason for 
the wall shapes to be similar along each of the curves can 
also be explained. It is interesting to note that, the way 
the wall moves in the x or y direction does not seems to 
have a significant influence on the linear stability of the 
system, as long as the amplitude of the wall oscillation is 
small. 
 
In addition we have found that whether cλ is chosen 
equal to 1 or 1667 in Davies and Carpenter's theory (with 
cκ=10 -5 cλ) makes  virtually no difference to the 
frequency predicted.  Only when cκ  is several order of 
magnitude larger (implying a much thicker wall), do we 
observe some small difference in frequencies between cλ 
=1 and 1667. Our conclusion is thus that for a thin 
walled channel, bending stiffness has a negligible effect 
on the linear stability of the system. 
 
Since we only observed mode 2 oscillations in our 
computations, we know there could not be interactions 
from higher modes as was observed by Jensen (1990). 
However, even for the same mode, it is possible to find a 
mode interaction between a Tollimien-Schlichting wave 
and a flutter or a travelling-wave flutter, such a mode 
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interaction has been identified by Davies & Carpenter 
(1997b) and further elaborated by Davies (2003. It is 
possible that the narrow tongue presented in the f - Re 
plot is a result of such interactions. However, to identify 
the interactions in detail, further work is clearly needed. 

6. CONCLUSION 
Instability in a fluid-beam model has been studied in this 
paper. The most intriguing result from this study is the 
presence of a narrow tongue region when the neutral 
frequency is plotted against Reynolds number, where a 
stable zone is sandwiched by the unstable ones. We have 
found that such a narrow tongue can be qualitatively 
reproduced by linear theories for a tensioned membrane 
(Luo & Pedley, 1998) or fluid induced surface waves ( 
Davies & Carpenter, 1997b; Davies:2003), if the final 
tension of the beam is used to calculate the frequency of 
the neutral stability. This seems to suggest that although 
the wall stiffness plays an important role in the unsteady 
behaviour of the system, it does so mainly by changing 
the final tension of the beam, and not by introducing a 
different mechanism. In other words, there is a strong 
indication that the final tension resulted from the pre-
stretch, the stretching stiffness, and the wall shape plays 
the most important role in the linear stability of the 
system. However, the physical meaning for the narrow 
tongue to appear in the final tension of the beam model 
still remains unclear. 
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