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Abstract
Soft tissue growth is crucial across various physiological applications, with mathematical modelling playing a pivotal role
in understanding the underlying processes. The volumetric growth theory serves as a commonly used mathematical
framework in this context. Our previous research on volumetric growth theory primarily concentrated on defining the
incremental growth tensor in loaded and stressed configurations (Zhuan and Luo 2022), revealing that this approach
closely aligns with experimental observations of residual hoop stress distribution. However, given the assumptions
employed, the approach has limitations in accurately predicting the growth timeline. In this work, we address these
issues by incorporating the effect of initial residual strain and introducing a new mixed trigger growth evolution law.
In this growth law, we do not use growth saturation as an upper limit, as this assumption cannot represent many
physiological conditions. Instead, we propose that growth in soft tissues leads to a new equilibrium state. To illustrate
this idea, we introduce a growth incompatibility function, denoted as I. We establish the analytical relationship between
I and the opening angle in a simplified cylindrical geometry resembling the structure of the heart or arteries. We put
forth a revised growth law that is both stress and incompatibility driven Our results show that by using this mixed trigger
growth law, tissues will not grow indefinitely. Instead, a stress-driven homeostasis incompatibility state will be reached.
In addition, by accounting for the initial opening angle in the model, we can accurately trace the growth history of the
heart, aligning with experimental data obtained from measuring the opening angle in young pigs from birth to maturity.
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Introduction
Mathematical modelling of soft tissues plays a pivotal role in
understanding growth and remodelling processes in physio-
logical systems, such as the heart. This field has been actively
researched for several decades, focusing on comprehending
and simulating the dynamic growth and remodelling occur-
ring within living tissues and organs, which hold significant
relevance in both physiological and pathological contexts.
Two prominent theoretical frameworks have emerged. The
constrained mixture theory, pioneered by Humphrey and
Rajagopal (2002), views tissues as composed of multiple
constituents with distinct natural configurations that can
continuously change. Models rooted in this theory have been
instrumental in investigating the growth and remodelling of
arterial structures, aneurysms, and the heart (Guan et al.
2023). However, accurately tracking the evolving natural
configurations of all constituents remains challenging, espe-
cially in the absence of comprehensive experimental data.

An alternative framework, the volumetric growth theory,
assumes a single reference configuration for all constituents.
It decomposes the deformation gradient tensor into a growth
tensor and an elastic tensor, effectively separating pure
growth from elastic deformation. This concept, introduced
by Rodriguez et al. (1994), has been widely adopted in
various applications, including Taber’s work on modelling
enlarged arteries in 1998 (Taber 1998a) and the research
conducted by Göktepe et al. (2010a) pertaining to the
heart. Nevertheless, a key limitation lies in most models

defining the growth tensor and its evolution law in the
reference configuration, despite the fact that growth is an
ongoing process within the current loaded configuration.
Recent studies have endeavoured to model growth in the
current configuration without releasing residual stresses but
often relied on simplifications such as material symmetries
(Goriely 2017). A recent framework that accommodates
arbitrary geometries and growth patterns fully evaluated
in the loaded configuration was introduced by Zhuan and
Luo (2022). This approach better captures the dynamic
tissue adaptation to changing biomechanical environments
and produces qualitative agreements with experimental
observations in terms of the transmural residual stress
distribution.

In our previous research, we identified that defining
the growth tensor in stressed configurations allowed us to
produce a qualitatively correct transmural distribution of
residual strain within the heart and arteries. However, even
with the implementation of the deformed growth tensor in
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the loaded configuration, traditional growth evolution laws
primarily focusing on stress- or strain-driven mechanisms
proved inadequate in capturing the time history of residual
strain that is consistent with experimental observations. Our
work shed light on the limitations of traditional stress-
driven growth laws. These laws lead the system towards
a state of saturated growth, as suggested by Moulton and
Goriely (2011). However, this saturation limit is unlikely to
be achieved, given the dynamic constraints imposed by the
geometry and time frame of living organs.

In addition, most of the previous models ignored the
initial residual strain induced by the heart formation. This
omission led to an overestimation of blood pressure within
arteries, resulting in discrepancies between estimated fibre
growth trends and experimental data (Holzapfel 2000).
Furthermore, the embryonic heart tube initially carries
substantial residual stresses, stemming not from growth
but rather from the heart’s morphogenesis. Experimental
studies by Taber et al. (1993); Taber (1998b) observed
these phenomena during chick embryonic development,
where heart membranes fused to form a single cardiac
tube composed of three layers: the myocardium, the cardiac
jelly, and the endocardium. The myocardium, composed
of contractile cells, serves as the primitive heart’s only
contractile element. These observations laid the foundation
for exploring the intricate relationship between cardiac
function, growth triggers, residual stress, and active stress.

The remodelling process in the heart is predominantly
triggered by local stress conditions, primarily attributed to
changes in cell shape rather than mere growth. The absence
of normal cavity pressure leads to minimal growth during
bending, as noted by Butler (1952), and during in vivo
looping, there is limited evidence to suggest that differential
growth significantly contributes to the process, as indicated
by Stalsberg and DeHaan (1969).

A natural young heart undergoes a growth process as
it matures, as defined by Sedehi and Ashley (2010). This
enlargement of the heart is a physiological adaptation that
occurs in response to increased pressure and thickening of
its walls, ultimately reaching a state of growth equilibrium.

At the microscopic level, it has been documented that both
residual strain and total stress/strain significantly influence
the size of cardiomyocytes (Garciarena et al. 2009). This
influence is often characterized by a proportional increase
in both the length and width of cardiomyocytes (Hunter and
Chien 1999). On a macroscopic scale, these cellular changes
culminate in an increase in cardiac mass (Pluim et al. 2000).

Pressure-induced changes drive ventricular wall thicken-
ing, while residual stress, stemming from growth incompat-
ibilities, acts as a limiting factor for total stress. The inter-
play between residual stress and subsequent (Cauchy) stress
reshapes the heart’s growth trajectory, guiding it toward a
state of maturity and stability. This ideal state features both
low residual stress and full heart functionality, ensuring the
heart’s optimal performance.

Furthermore, it is essential to consider the presence
of residual stress within the passive embryonic heart, as
documented by Taber et al. (1993). The dorsal myocardium
maintains longitudinal residual tensile stress through
stretching or sustained contraction, leading to the bending
of the cardiac tube with the dorsal myocardium located

at the inner curvature. Even after the dorsal myocardium
has resorbed, and the heart separates from the embryo, it
retains its looped configuration, indicating a remodelling
process to mitigate bending-induced stresses. This looping
is a fundamental aspect of cardiac morphogenesis, involving
biomechanical forces, even though the precise mechanisms
remain incompletely understood.

From a growth mechanism perspective, looping introduces
the initial opening angle, which triggers initial growth
incompatibility and residual stress. This initial residual strain
alters the growth path, influencing stress distribution and
cell function during heart development. The implications
of these experimental observations suggest the substantial
presence of initial residual stress, originating from the heart’s
formation. Subsequent growth mechanisms operate to reduce
residual strains, guiding the heart towards an equilibrium
state (Taber and Humphrey 2001; Latacha et al. 2005).

Building on the concept of defining growth laws in loaded
configurations, as introduced by (Zhuan and Luo 2022)
in their study on volumetric growth, this paper introduces
a novel mixed trigger growth law that incorporates both
Cauchy stress and growth incompatibility as catalysts for
growth. To elucidate this concept, we initially focus on a
specific model system—the cylindrical geometry, relevant to
the left ventricles and blood vessels.

To substantiate the qualitative predictions of our theory,
we compare our findings with longitudinal measurements of
the opening angles in the short-axis cut of the left ventricle in
porcine hearts, tracked from birth. The congruence between
the experimental trends in the opening angle over time and
our theoretical predictions underscores the validity of our
approach.

Kinematics of finite growth
Let X and x be the position vectors of a material point
in the reference and current configurations, B0 and Bt,
respectively. The pure stress-driven concept of volumetric
growth from the reference configuration is illustrated in
the lower path of Fig. 1, where the total deformation
gradient transforms a body from B0 to a grown and stressed
configuration Bt. Assuming that the mapping x(X0) exists
and is differentiable, this overall deformation gradient is

A = FEFG = FeFτFg, (1)

where FG and Fg are the total and incremental pure growth
tensors, respectively, from B0, Fτ is the residual elastic
deformation due to growth, Fe is the elastic deformation due
to loading, and FE = FeFτ is the total elastic deformation.
Although in the first step as in Fig. 1, we have FG = Fg , in
the subsequent growth, these two become different.

It is noted that in the pure stress-driven approach one often
uses the form A = FEFG only, because it is either assumed
that growth does not induce residual strain, i.e. Fτ = I, as in
(Menzel and Kuhl 2012), or that Fτ is incorporated into FE
as here and in (Taber and Eggers 1996; Goriely 2017). In this
paper, since we explicitly address the residual deformation
due to growth, we assume that normally Fτ 6= I, and write
out (1)2. This allows the pure growth-induced deformation
Fτ to be explicitly modelled.
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We now briefly describe the theory that enables growth
law to be defined in a loaded configuration (Zhuan and Luo
2022). As shown by the upper path in Fig. 1, we denote such
a configuration as B̄. B̄ is reached following a deformation
A1 from the stress-free configuration B0.

X0 ∈ B0 x ∈ B̄

BG τ ∈ Bτ

B̄g x ∈ Bt

A

FG = Fg

A1 = F̄e

Fτ

Fe

F̄τF̄g

FE

Figure 1. Growth from a stressed configuration B̄ following a
general deformation gradient A1 = F̄e. Then the body undergoes
a small incremental deformation F̄g , which is made compatible by
F̄τ from B̄g to Bt. The result can be equally achieved following
the lower path as Fg from B0 to Bg followed by Fτ from Bg to
Bτ , and then Fe from Bτ to Bt.

Consider an incremental growth F̄g from the loaded
configuration B̄ to B̄g , which is made compatible by F̄τ
(Note F̄τ is not the same as the residual strain of the body
that occurs when loading is removed), before arriving at Bt.
Since both the upper and lower paths start from B0 and end
at Bt, the results of these two paths in Fig. 1 are equivalent,
so we can also express the total deformation gradient as

A = F̄τ F̄gF̄e, (2)

However, the significance of following the upper path is so
that we can define an incremental growth tensor F̄g from the
loaded configuration B̄ as in (Zhuan and Luo 2022). If one
follows the lower path in (1), then the incremental growth
tensor Fg is always defined in a stress-free configuration.

Since we assume that pure growth is independent of the
elastic stretch, the only difference between F̄g and Fg is due
to the rotation of A1, i.e.

Fg = RT
1F̄gR1, (3)

where R1 = V−1
1 A1, and V1 = A1A1

T. By making use of
(3), we are able to obtain Fg , and then proceed along the
traditional growth and remodelling computational path from
B0 to Bt via Bg . In other words, the Cauchy stress in Bt is

σ = FE
∂Wg(FE)

∂FE
− pI, (4)

where FE = FeFτ . The strain energy function Wg with
respect to Bg is computed from the strain energy function
W0 with respect to B0 as

Wg(Fe) = J−1
g W0(A), (5)

where we have used Jg = det Fg , and Je = 1.
The residual stress τ is simply the Cauchy stress evaluated

in Bτ when the external loading is removed, i.e. Fe = I,
FE = Fτ ,

τ = Fτ
∂Wg(Fτ )

∂Fτ
− pI. (6)

In other words, τ and σ both obey the corresponding equi-
librium equations and the appropriate boundary conditions.
From these we solve for Fτ and Fe, and τ and σ.

B0 B̄1

BG1

B̄g1
B̄gn−1 B̄n

BG

BGn−1

B̄gn

τ ∈ Bτ

Bt

Fg1

...

Fgn
Fτ

...

F̄en
F̄τn

Fe
FE

A

FG

F̄gn

An

Figure 2. General roadmap after n steps of continuous growth
and deformation, the deformation gradient from B0 to Bt is A,
the deformation gradient from the B0 to the loaded configuration
B̄n is An. From B̄n we define the incremental growth F̄gn , and
the deformation is made compatible by F̄τn . The total cumulative
pure growth tensor B0 to BG is FG. BG is the grown, stress-free
but incompatible configuration, and Bτ is the compatible and
residually stressed configuration.

Subsequent growth can be computed after many steps of
incremental growth and deformation, as shown in Fig. 2, so
B̄ becomes the B̄1, B̄2...and B̄n, B̄g becomes B̄g1

, B̄g2
,

...and B̄gn , BG becomes BG1
, BG2

, ...and BG. Notice the
external loading F̄ei may change betweem each step. After
nth steps of growth, A can be written as

A = F̄τn F̄gnAn = FEFG, (7)

where
An = F̄en ...F̄τ2 F̄g2

F̄e2 F̄τ1 F̄g1
A1,

and FG is the total growth tensor with respect to B0,

FG = Fgn ...Fg2Fg1 , (8)

with each Fgi , i = 1, 2, ...n rotated from F̄gi following (3),
except A1 in (3) is replaced by the total deformation gradient
Ai prior to the ith growth (Zhuan and Luo 2022). FE
is the total elastic deformation with respect to the grown
configuration BG,

FE = FeFτ = AF−1
G . (9)

For a more general computational algorithm, please refer to
(Zhuan and Luo 2022)*

Growth induced incompatibility in a
cylindrical geometry

Concept of incompatibility index
To derive an appropriate growth law from the loaded
configuration, we now restrict our analysis to a cylindrical
model featuring isotropic deformation. Then B0 is described

∗Although Fek and Fτk in equations (23) (24) of (Zhuan and Luo 2022)
should be FEk and FGk .
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as

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L. (10)

Since the elastic energy of a growing isotropic material
only depends on the symmetric part of the growth
tensor (Goriely 2017; Lamm et al. 2022). Hence, we only
need to consider the case when Fg is symmetric. This means
that Fg is no longer a two-field tensor, it is a one-field tensor
with both legs defined in B0. (Fig.1). Likewise, FG is fully
also defined in B0, and F̄g is fully defined in B̄.

For simplicity, we further assume that the growth tensor
is diagonal. This assumption is widely accepted by the
community for the left ventricle and arteries (Göktepe et al.
2010b). For a planar growth, the total growth tensor from (8)
in matrix representation is

(FG) = diag(ϑR, ϑΘ, 1), (11)

where ϑR and ϑΘ are the cumulative growth multipliers
in the R and Θ directions. Moreover, we assume that
the cylindrical model geometry remains cylinder after
deformation and growth, then both bases in B0 and B̄ are
the same, and we have

Fg = F̄g, (12)

This deformation also suggests that the growth parameters
only spatially depend on the radial location, i.e.

ϑR = ϑR(R), ϑΘ = ϑΘ(R).

After deformation, we write x = χ(X, t) in Bt

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l (13)

as
r = r(R), θ = Θ, z = λZ. (14)

where λ is a constant pre-stretch parameter. Since the
increase of the volume increase due to the growth is JG =
det FG, we can write

r =

√∫ R
Ri

2JGRdR

λ
+ r2

i , (15)

The total deformation is given as

A = r′er ⊗ ER +
r

R
eθ ⊗ EΘ + λez ⊗ EZ , (16)

where {eR, eΘ, eZ} and {er, eθ, ez} are the coordinate basis
in B0 and Bt, respectively.

The material incompressibility requires that det(FE) = 1,
so we have

det A = det(FEFG) = ϑRϑΘ = JG. (17)

From (16)(17), we have

r′r

R
λ = ϑRϑΘ. (18)

Substituting (18) into (15), we write

r2 = r2
i + 2

∫ R

Ri

1

λ
ϑRϑΘRdR. (19)

To evaluate the residual strain Fτ in Bτ , we remove loading
and let Fe = I, then Fτ = AF−1

G , i.e.

(Fτ ) = diag (
r′

ϑR
,

r

RϑΘ
, λ). (20)

Now if the body is totally compatible then

Fτ = I. (21)

In other words, 
r′

ϑR
= 1,

r
RϑΘ

= 1,

λ = 1.

(22)

Rewriting (18) as
r′

ϑR
=
R

r
ϑΘ, (23)

combining with (22)2, we see that (22)1 automatically holds.
From (22)2 and (19), we obtain

(ϑΘR)2 = r2
i + 2

∫ Ro

Ri

ϑRϑΘRdR. (24)

Differentiate (24) with respect to R, we have

ϑ′Θ =
ϑR − ϑΘ

R
. (25)

Equation (25) can be viewed as the compatibility condition.
Therefore, we introduce a growth incompatibility index as

I =
ϑR − ϑΘ

R
− ϑ′Θ. (26)

We can see that I measures the total residual strain at Bτ .
I = 0 when the growth induced deformation is compatible
and Fτ = I. If I > 0, the local residual strain (stress) is
positive, if I < 0, the local residual strain (stress) is negative.
Notice that I is a function of R, i.e. it is a distribution.

A Mixed-Trigger Growth Law in a Stressed
Configuration
It has traditionally been posited that the law governing
growth evolution is driven by either stress or strain,
in conjunction with a limiting function that prevents
unrestricted growth. By defining incremental growth from
a stressed configuration as F̄g = dϑ, where ϑ=(ϑr, ϑθ,
ϑz), known as growth multipliers, Zhuan and Luo (2022)
investigated the growth of a left ventricle. Their modelling
revealed that the distribution of transmural residual stress
aligns with experimental observations when applying the
current framework. Conversely, utilizing a pure stress-driven
approach yields results that diverge from these observations.
However, the growth law used by Zhuan and Luo (2022)

ϑ̇ = l(ϑ)φ(σ), (27)

still involves a similar limiting function as in (Göktepe et al.
2010a), i.e.

l(ϑj) =
1

αl

[
ϑmaxj − ϑj
ϑmaxj − 1

]βl
, j = r, θ, z,
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where ϑmaxj are the maximum values of the growth
multipliers, and the stress-driven trigger is defined as

φ(σ) =

{[
tr(σ)− σcrit]βφ tr(σ) > σcrit,

0 tr(σ) ≤ σcrit.
(28)

where σcrit is the critical value of Cauchy stress. αl, βl, and
βφ are genetic related growth parameters.

The introduction of the limiting function is primarily for
mathematical convenience, as opposed to being grounded in
experimental observations. Thus, in this work, we propose a
new mixed trigger growth law. Our assumption here is that
growth occurs in the current stressed configuration and is
intricately driven by the interactions among stress, residual
strain (or the incompatibility index), as well as the genetic
growth. To this end, we modify the growth evolution law (27)
to be

ϑ̇ = ψ(I)φ(σ), (29)

where a non-negative function

ψ(I) =
1

αI
|1− I/Ih|βI , (30)

is used to replace the limiting function. Ih is a constant,
representing the maximum local value of I at homeostasis,
while αI and βI are growth parameters. It is evident that
when I = 0, i.e., Fτ = I, growth is entirely driven by stress.
However, what inhibits growth beyond the critical stress
level? Inspired by experimental observations of growing
hearts (Taber and Humphrey 2001), we propose that the
deforming body exhibits a tolerance threshold known as
homeostatic incompatibility, which is often nonzero for
mature organs. This mechanism effectively balances stress
distribution when loading is applied either from within or
outside cylindrical structures, such as the heart or blood
vessels.

Thermodynamics considerations
To ensure that the new growth law is rational from the
thermodynamics perspective, we invoke the Clausius-Duhem
inequality. For a homogeneous temperature field from B0 to
Bt, this inequality can be written as (Goriely 2017)

M : G + h̄ ≥ 0, (31)

where
G = ḞGF−1

G = Θ̇ (32)

is the rate of growth defined in the stress-free configuration
B0, Θ = (θR, θΘ, θZ), M = FT

EσF-T
E is the Mandel stress

defined in the virtual configuration BG (Fig. 2), and −h̄ is
the non-compliant entropy contribution to the process. Note,
we have used JE = 1 in the expressions. In our cylindrical
model, since M and σ are coaxial, M = σ. This implies that
the growth rate G should be a function of M or σ to satisfy
the inequality (31). In our cylindrical model, this function is
chosen according to (29), given that G = Θ̇ = ϑ̇, as shown
in (12). Therefore, our proposed growth law aligns with
thermodynamic principles.

Indeed, while thermodynamic considerations offer essen-
tial guidelines, they cannot prescribe a specific form for a
growth law, particularly due to our limited understanding
of h̄ (Goriely 2017). Since incremental growth invariably
occurs within a stressed configuration, it is physically intu-
itive to suggest that such growth is driven by the actual
(Cauchy) stress experienced by the tissues.

Application for porcine heart growth

We now apply our theory to the growth of porcine hearts.
For simplicity, we consider a cylindrical heart model
characterised by transversely isotropic growth. This model
accounts for the proportional increase in cardiomyocyte
length and width, leading to thickening of the left ventricular
wall and an expansion of the chamber size, as observed by
Hunter and Chien (1999) and Pluim et al. (2000).

Accordingly, the incremental growth tensor can be
represented by a single growth multiplier ϑ as

F̄g/dt = ϑ̇ = ϑ̇I + (1− ϑ̇)ez ⊗ ez. (33)

where

ϑ̇r = ϑ̇θ = ϑ̇, ϑz = 1.

Opening angle measurements of growing
porcine hearts

The open angle provides a simple quantitative measure
of the residual strain distribution for incorporation into
analytic and continuum mechanics models. The ventricular
opening angle is defined as the angle between the two
radial lines connecting the centre of the chamber, versus the
centrelines of the cut wall (Fig. 3). Here, porcine cardiac
tissue was harvested from animals aged 1 day, 14 days, 7
months and 3 years. A heart from each age is presented for
comparison in Fig. 4 (a–d). The youngest heart was harvested
from an animal who died due to hypoxia either during, or
immediately after, unassisted farrowing (birth). All other
tissue was harvested from animals slaughtered for the food
industry. All hearts appeared healthy and fully developed,
with consistent tissue colour and no obvious abnormalities.
A scalpel (blade size 11; Swann Morton, UK) was used to
cut the hearts in the short axis, through the equatorial region.
A single, 6 - 8 mm thick slice, was dissected from each heart
and just submerged in cardioplegic fluid, which counteracted
the gravitational forces and meant the slice was in a no-
load state. The slice was then photographed from above,
before cutting the left ventricle free wall radially, opposite
the interventricular septum. A second photograph was then
taken< 30 s after the cut (Fig. 4d). Fig. 3 presents two photos
of a slice, one before and one after the cut, demonstrating
measurement of the open angle.

For each group of three porcine hearts, the averaged
measurements of the opening angles at the four time instants
are 93.2± 8.6o, 75.1± 12.6o, 33.4± 6.2o and 30.7± 4.1o,
respectively.
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Figure 3. Definition of opening angle. Left: Drawing of a slice in
the no-load state. The chamber centre of this configuration is
estimated by constructing a diameter through the epicardial
edge of the cut and the most distant epicardial point. Right:
Same slice in the opening angle state. The opening angle is
defined as the angle between the two radial lines connecting
the centre of the ventricular chamber and the centre lines of the
walls at the cut edges.

Figure 4. Harvested porcine hearts of four age groups, namely
1 day old (a), 14 days old (b), 7 months old (c), 3 years old (d).
Scale bar = 20 mm.

Computation of the incompatibility index based
on opening angle measurement
For time steps 1, 2, . . . , n, each incremental growth tensor of
the heart model is computed from (33). Furthermore, A, FE ,
and FG are computed from (7), (9), and (8), respectively.

Material incompressibility requires that det FE = 1. The
invariant I1 of right Cauchy–Green deformation tensor
FT
EFE is

I1 = λ2
Er + λ2

Eθ
+ λ2,

where

λEr =
r′

ϑ
, λEθ =

r

Rϑ
.

The components of the Cauchy stress tensor in Bt are then

σrr = −p+
∂WG

∂I1
λ2
Er ,

σθθ = −p+
∂WG

∂I1
λ2
Eθ
,

σzz = −p+
∂WG

∂I1
λ2,

where WG is the isotropic part of the invariant-based
constitutive law for the myocardium in BG developed by
Holzapfel and Ogden (2009).

In the absence of body forces, the stress components σrr
and σθθ in Bt must satisfy the equilibrium equation divσ =
0, i.e.

dσrr
dr

+
σrr − σθθ

r
= 0.

Given a heart pressure P and assuming zero axial force, the
governing equations become∫ ro

ri

σrr − σθθ
r

= P, (34)

π

∫ ro

ri

(2σzz − σrr − σθθ)r = 0. (35)

By solving (29) and (35), we determine ri and z in Bt

and, consequently, the Cauchy stress. Then, at each growth
step (1, 2, . . . , n), applyiing the growth law (29) and solving
(34) and (35) again with P = 0, we can calculate the residual
stress tensor τ in Bτ .

To estimate the opening angle caused by growth at time
t, we introduce a radial cut at Bτ denoted by coordinates
(r, θ, z), and let the cylindrical model relax into a grown and
incompatible configuration with coordinates (ρ, φ, ξ) and an
opening angle α, such that

ρi ≤ ρ ≤ ρo,
α

2
≤ φ ≤ 2π − α

2
, 0 ≤ ξ ≤ L.

It is important to note that, in general, this configuration
does not exactly correspond to BG. However, if we assume
that a single radial cut can release all the residual strain—a
simplification as observed by (Zhuan and Luo 2020)—then it
can be considered a mechanical proxy for BG. Henceforth,
the configuration following an opening angle cut will be
referred to as BG.

The total deformation tensor A from B0 to Bτ is

A = ρ′eρ ⊗ ER +
ρk

R
eφ ⊗ EΘ + eξ ⊗ EZ

where

ρ =

√
k

∫ R

Ri

2JGRdR+ ρ2
i , (36)

JG = det(A), and

k = 2π/(2π − α). (37)

Since the loading is removed, we set Fe = 1. Conse-
quently, the residual elastic deformation Fτ from BG to
Bτ is computed using (9). Therefore, the corresponding
residual stress components in Bτ must satisfy the equilib-
rium equation divτ = 0. By solving equations (34) and (35)
under the boundary condition P = 0 in Bτ , we determine ρi.
Subsequently, we calculate k and the opening angle α from
(36) and (37).

The corresponding incompatibility distribution is then
derived as

I =
ρ′

R
(1− 1

k
) =

k

ρJG
(1− 1

k
) =

k − 1

ρJG
. (38)

Therefore, given a measured opening angle (or kh) from
a mature heart, the homeostatic incompatibility index is
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chosen as

Ih = sgn
(
kh − 1

ρmJGh

)
max
ρ=ρm

∣∣∣∣kh − 1

ρJGh

∣∣∣∣ , (39)

where JGh is the determinant of the total deformation
gradient at homeostasis. Assuming that n steps of growth
occurred at time t, and m steps of growth occurred when
homeostatic incompatibility was reached, we have

JG = Jgn . . . Jg2
Jg1

, and JGh = Jgm . . . Jg2
Jg1

. (40)

Heart growth with an initial opening angle
We now consider a heart model with an initial opening
angle α0, equivalent to starting from the incompatible
configuration BG:

ρi ≤ ρ ≤ ρo,
α0

2
≤ φ ≤ 2π − α0

2
, 0 ≤ ξ ≤ L.

Using the cylindrical coordinates (ρ, φ, ξ) for BG, and
{r, θ, z} for the corresponding intact configuration Bτ , we
have

r = r(ρ), θ = k0(φ− α0

2
), z = λξ,

where k0 = 2π/(2π − α0).
By closing the initial opening angle, the incompressibility

condition becomes

r =

√
ρ2 − ρ2

i

k0λ
+ r2

i . (41)

Solving the equilibrium equation (34) with P = 0, we
obtain the inner radius ri of the closed cylinder in Bτ . The
residual strain tensor, due to the closure of the opening angle,
is given by

Fτ0 = r′er ⊗ Eρ +
rk0

ρ
eθ ⊗ Eφ + λez ⊗ Eξ, (42)

following (Holzapfel et al. 2000).
We denote FG0

as the underlying growth required to take
an imaged stress-free and intact reference configuration B0

to BG. Using the coordinate (R,Θ, Z) for B0, we have

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ l.

Thus, for BG, we can write

ρ = ρ(R), φ =
1

k0
Θ +

α0

2
, ξ = Z.

In other words, the deformation gradient from B0 to BG is

FG0
=
∂ρ

∂R
eρ ⊗ ER +

ρ

R

∂φ

∂Θ
eφ ⊗ EΘ +

∂ξ

∂Z
eξ ⊗ EZ ,

(43)
From which we can deduce FG0 = diag(ϑR, ϑΘ, 1) as

ϑR =
∂ρ

∂R
= ρ′,

ϑΘ =
ρ

R

∂φ

∂Θ
=

ρ

Rk0
,

ϑZ =
∂ξ

∂Z
= 1,

and

ρ =

√
k0

∫ R

Ri

2JG0
RdR+ ρ2

i , (44)

where JG0
= det(FG0

). Notably, as the deformation is from
a closed configuration to one with an opening angle, (44) is
different to (41).

Accordingly, the initial incompatibility distribution is

I0 =
k0 − 1

ρJG0

. (45)

We now solve the problem following the same procedure
as before, except that the total growth tensor at time t
becomes

FG = Fgn ...Fg2Fg1FG0 . (46)

It is important to note that although JG0
is generally

unknown, its exact value is not required for our calculations.
This is because, in equation (30), JG0 is effectively cancelled
out in the ratio I/Ih, as both terms I and Ih have the factor
JG0

.

Results
In all the simulations that follow, the parameters are chosen
as follows:

αl = 2, βl = βφ = 1, σcrit = 0.0012MPa, P = 140mmHg,

in line with our previous paper (Zhuan and Luo 2022).
Additionally, for equation (30), we choose αI = 2, βI =
1, 1.5, and 2. I0 is computed from the opening angle
measured at time zero, with Ih = 0.78 estimated from
measurements at t = 3 years.

Pure stress-driven growth law
We first apply the pure stress-driven growth law, as defined
in (29), to the heart model. The transmural distribution
of residual hoop stress, τθθ, is depicted in Fig. 5a.
This distribution qualitatively agrees with the experimental
observations by (Costa et al. 1997). In our previous paper
(Zhuan and Luo 2022), we demonstrated that this residual
stress distribution results from defining the incremental
growth tensor in the stressed configuration.

On the other hand, the slope of the distribution begins to
increase, reaches its peak at week 14, and then gradually
declines to zero as growth saturates. In other words, all
material points converge towards the same upper limit, in
line with predictions by Goriely (2017). At this upper limit,
the growth incompatibility index drops to zero across the
myocardidum. This mechanism accounts for the eventual
reduction of residual stress to zero when applying the
pure stress-driven growth law, a result that diverges from
experimental findings.

The results from employing the same model, albeit with an
initial opening angle of α0 = 1

2π, are presented in Fig. (5b).
The distributions again show similarities. The maximum
hoop residual stress value increases from 5.12 kPa at week
0 to 7.30 kPa by week 7, peaking at 11.22 kPa around week
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(a)

(b)

Figure 5. Transmural distributions of the hoop residual stress
τθθ using the pure stress-driven growth law without opening
angle (a), and with the opening angle (b). Blue-squared line
represents the residual stress estimated by Wang et al. (2014)
based on opening-angle experiment on heart by Costa et al.
(1997)

14, before it gradually diminishes, returning to its original
value as time approaches infinity.

The overall trend is depicted more clearly in Fig. 6,
showcasing the time history of the opening angle, both with
and without the initial opening angle considered. In the
case lacking an initial opening angle, the opening angle
increases steadily from the start until it reaches a maximum.
It then diminishes as all material points meet their growth
upper limits. With the initial opening angle factored in, the
calculated opening angle initially surges to a peak of 1

2π,
before gradually reverting to its initial state over time.

In summary, introducing an initial opening angle alters
the time-dependent behaviour of residual stress, making it
similar to scenarios without an initial angle but changing
the long-term upper limit. This adjustment may mirror real-
world situations where disease-induced growth prompts an
organ to revert to its previous homeostatic state once health
is restored, as suggested by Humphrey and Schwartz (2021).
However, such a growth pattern does not account for the
healthy development of a young porcine heart, which is the
focus of our study. Ramasubramanian et al. (2008) observed
that in a chick embryo heart, the opening angle decreases
from its initial value, eventually stabilising at a mature

Figure 6. Time history of the opening angle using the pure
stress-driven growth law without opening angle (a), and with the
opening angle (b)

equilibrium with a smaller opening angle due to heart wall
thickening, which reduces initial residual stress.

(a)

(b)

Figure 7. Transmural distributions of the hoop residual stress
τθθ at weeks 1-35 using the mixed trigger growth law, without
(a), and with the opening angle (b). The squared data are
obtained by Guan et al. (2023).
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(a)

(b)

Figure 8. The time history of the opening angle using the
mixed trigger growth law, with no initial opening angle (a), and
with initial opening angle (b). The measured opening angles of
young pigs’ hearts from 1 day to 30 weeks and 3 years are
shown as symbols and error bars in (b). It is noted that
homeostasis is reached in all cases after 30 weeks.
Furthermore, it appears that a value of βI = 1.5 provides the
best description of the experiments. Although values of 1 and 2
also yield qualitatively good results.

Mixed trigger growth law

We now apply the mixed trigger growth law, (30), for the
cylindrical heart model, with and without the initial opening
angle. The transmural distributions of the hoop residual
stress are shown in Fig. 7 for different time instants. As
shown in Fig. (7a), the maximum residual stress increases
from 0 to a peak value of 1.03 kPa at week 9. Afterward,
it gradually decreases, approaching nearly zero by the tenth
week, even without imposing an upper limit on the growth
multiplier as in (27). This behaviour results from the mixed
trigger growth law, wherein both growth incompatibility and
Cauchy stress affect circumferential growth.

The transmural distribution of Cauchy stress, following
the application of inner pressure, diminishes from the
endocardium to the epicardium, a trend that is inverse to that
of residual stress, aligning with our simulations and those
of others (Guan et al. 2023). This disparity promotes more
rapid growth from the inner surface and slower growth from
the outer surface. Conversely, the growth incompatibility,
indicative of residual strain, shifts from negative at the
endocardium to positive at the epicardium. As a result,
incompressibility prompts more accelerated growth from the
outer surface and decelerated growth from the inner surface.
Therefore, Cauchy stress and incompatibility function as

competing triggers, culminating in a reduction of residual
strain (or stress) over time.

The transmural distributions of residual stress, influenced
by the initial opening angle, are illustrated in Fig. (7b).
Here, the maximum residual stress diminishes steadily
from 6.03 kPa at week 1 to 0.51 kPa by week 21,
ultimately reaching a state of equilibrium. This pattern is
attributed to the interplay between growth triggers: growth
incompatibility and Cauchy stress. Initially, the significant
growth incompatibility induced by the initial opening angle
seeks resolution, leading to a decline in residual stress. As
this process unfolds, the effect of Cauchy stress remains
relatively consistent. Over time, an equilibrium is established
between Cauchy stress and growth incompatibility, resulting
in a stable distribution of residual stress.

The temporal evolution of opening angles under the
mixed trigger growth law is depicted in Fig. 8b, eventually
stabilising at a significant yet smaller angle. This behaviour
closely aligns with our experimental measurements in
porcine hearts, where the opening angles measured at
various stages showed a gradual decrease, mirroring the
computed trend that also reaches a stable limit as indicated
by experimental observations. The consistent decrease in
the opening angle is due to the thickening of the heart
wall, aimed at reducing the initial residual stress. As the
heart matures, the opening angle stabilises at a lower
level, sufficient for maintaining heart function. This reduced
equilibrium residual strain state has also been observed by
other researchers (Ambrosi et al. 2011; Goriely 2017).

Discussion
The core objective of this study is to introduce a new
mixed trigger growth law that captures incremental growth
from the loaded configuration, aiming for a qualitative
alignment with experimental observations. Our investigation
is currently limited to cylindrical models and isotropic
materials, and we have applied this model to the study
of porcine heart growth. For the cylindrical deformation,
we have shown that the proposed new growth law satisfies
thermodynamic conditions. We acknowledge that real heart
geometry significantly differs from a cylindrical model, and
that myocardial tissue is far from being an isotropic material.
In this context, the remodelling process due to changes in
fiber structures is not considered here.

In our previous work (Zhuan and Luo 2022; Guan
et al. 2023), guided by stress-driven growth laws, we
applied the general framework to more complex models,
incorporating anisotropic growth in both cylindrical and
more realistic three-dimensional heart models. This included
modelling directional growth along fibres, sheets, and
normals. However, this paper does not explore the
complexities associated with the effects of fibres (myocyte
and collagen fibres). To develop a new growth law and
facilitate comparison with experimental measurements of
heart growth, we opted for a simplified cylindrical model.
This choice is in line with a well-established precedent, as
the cylindrical heart model has been extensively utilised by
numerous researchers, particularly in experimental studies
(Omens and Fung 1990; Omens et al. 1993; Taber et al.
1993; Hosseini et al. 2017; Taber and Chabert 2002; Göktepe
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et al. 2010a; Lee et al. 2015). Integrating fibre growth and
remodelling into our model would necessitate more complex
tensor rotations and the strain energy functions—areas we
intend to explore in future studies.

The reason we assume that the z-direction is growth-free
in our examples is due to the experimental measurements
being limited to radial cuts in the middle wall of the heart.
In the absence of specific data, the simplest assumption
is that there is no growth in this direction. However, we
acknowledge that this may not accurately reflect reality and
have addressed this point in the Discussion section. The fact
that our growth law has achieved qualitative agreement with
experimental observations for the first time suggests that any
potential growth in the z-direction does not play a dominant
role.

We understand that growth processes are typically
multiphysics in nature, as they involve the coupling
of various phenomena such as mass transport, nutrient
diffusion, and mechanical deformation. Consequently,
the stimuli for growth can be diverse. In what is
known as homeostatic growth, which occurs during tissue
maintenance, stress acts as the direct stimulus for growth
(Erlich et al. 2019). In contrast, in many cases, growth
is propelled by nutrient diffusion. In our growth law, we
introduce a tuning factors, αI and βI , to partially regulate the
growth rate. These parameters could be adapted in a nutrient-
diffusion growth model, e.g., function (3) in (Soleimani et al.
2020), where nutrient concentration C is utilised to regulate
growth. Accordingly, we can integrate the stimuli of stress,
residual strain, and nutrient diffusion to control the growth
of living organs in future.

The validation of our model is underscored by its align-
ment with experimental data. Considering the theoretical
nature of our work, the room for parameter variation is
limited; the homeostatic value of the incompatibility index,
Ih, was deduced from measurements, whilst other parame-
ters were obtained from existing literature. To examine the
sensitivity of our results to the value of βI in (30), which
should depend on nutrients and other growth factors, we
conducted simulations for βI = 1, 1.5, and 2, finding the
model’s predictions to be robust. Similarly, altering αI has a
smaller effect than βI (not shown), primarily influencing the
timing of equilibrium establishment. Notice we could also
use the distribution of the incompatibility index for Ih, not
a local maximum value. However, our simulations show that
the effect is similar to changing the value of β. Given that
the configuration following the opening angle cut is only a
proxy, we believe that choosing the maximum local value of
the incompatibility index is simpler and equally rational.

Finally we would like to discuss the differences between
our methodology and those methodologies employing
homeostatic surfaces as described in (Lamm et al. 2022;
Holthusen et al. 2023). In the homeostatic surface approach,
a growth potential is introduced as a function of the
conjugated driving forces and a set of material parameters,
representing a hemostatic surface located within the principal
stress space. The growth tensor is defined so as to minimize
the amount of energy needed to reach this homeostatic state.
In other words, the direction of growth is the gradient of
the potential to the Mendal stress in this framework. In our
approach, the growth is controlled by reducing either the

deformation incompatibility or the trace of Cauchy stress.
The key difference is that they defined the incremental
growth tensor in the reference configuration, and therefore
can consider the elastic energy and growth energy as
decoupled. In our approach, the incremental growth is
defined in the stressed configuration, so in general it is driven
by the Cauchy stress as well as by previous growth and
loading history (Zhuan and Luo 2022).

Our current growth law is specifically tailored for
cylindrical models, which have many clinical applications.
However, there is a need to develop a more universal growth
law for general deformation that can be applied across a
variety of situations. An intriguing avenue for future research
may be exploring the integration of homeostatic surface-
driven growth with incremental growth laws defined within
stressed configurations.

Conclusion

In this study, we adopted a new mixed-trigger approach
using both stress and growth incompatibility to jointly
drive the growth process. In addition, our work introduced
the effect of the initial opening angle, a factor often
overlooked in previous studies. We demonstrated that
considering this initial condition is essential in the growth
history of the newborn heart. To illustrate this concept,
we applied our methodology to a simplified multi-layer
cylindrical model, one that allows for inhomogeneous
growth in residually stressed and loaded configurations.
Subsequently, we compared our findings concerning residual
stress distribution and opening angle with experimental
measurements taken from healthy young porcine hearts.
Furthermore, our results revealed that without considering
the initial opening angle, the residual strain increases first
and then reduces to a homeostatic limit as time extends to
infinity, a trend unsupported by our experimental data. This
is becuase the residual strain in the new formed heart is often
at its maximum level. However, our mixed trigger growth
law combined with the consideration of initial opening angle,
yielded results that significantly aligned with experimental
observations of growing porcine hearts. In essence, our
estimated opening angle demonstrated a reduction from its
initial value and decrease to an equilibrium over time. This
trend not only agrees with our experimental measurements
but also concurred with a well-documented phenomenon: the
reduction of stress in the tissue wall under external loading
as the newborn heart matures.
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