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A nonlinear anisotropic model for porcine aortic heart valves
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Abstract

The anisotropic property of porcine aortic valve leaflet has potentially significant effects on its mechanical behaviour and the
failure mechanisms. However, due to its complex nature, testing and modelling the anisotropic porcine aortic valves remains a
continuing challenge to date. This study has developed a nonlinear anisotropic finite element model for porcine heart valves. The

model is based on the uniaxial experimental data of porcine aortic heart valve leaflet and the properties of nonlinear composite
material. A finite element code is developed to solve this problem using the 8-node super-parameter nonlinear shells and the update
Lagrangian method. The stress distribution and deformation of the porcine aortic valves with either uniform and non-uniform

thicknesses in closed phase and loaded condition are calculated. The results showed significant changes in the stress distributions due
to the anisotropic property of the leaflets. Compared with the isotropic valve at the same loading condition, it is found that the site
of the peak stress of the anisotropic leaflet is different; the maximum longitudinal normal stress is increased, but the maximum

transversal normal stress and in-plane shear stress are reduced. We conclude that it is very important to consider the anisotropic
property of the porcine heart valves in order to understand the failure mechanism of such valves in vivo. r 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The use of prosthetic heart valves in replacing
diseased natural valves has become a routine procedure
in the last 50 years. There are two basic types of
prosthetic valves: mechanical ones and bioprosthetic ones.
Compared to the mechanical valves, bioprosthetic heart
valves also have successful performance and there is no
need for the patient to have immunosuppressive therapy,
but their long-term performance has been disappointing.
Most of the degeneration of bioprosthetic heart valves
can be attributed to calcification and tearing of leaflets.
The stress concentration is thought to be one of the
main reasons responsible for the degeneration.

Numerical simulation of bioprosthetic heart valve has
made significant contributions to analysis of the stress
distributions and design optimizations of bioprosthetic
heart valves. Some of these studies used the linear
isotropic models for the valves (Gould et al., 1973;
Ghista and Reul, 1977), others used nonlinear isotropic

models (Hamid et al., 1985, 1986; Huang et al., 1990;
Black et al., 1991; Krucinski et al., 1993; Thornton et al.,
1997). It was found that the stress of leaflet is sensitive to
geometrical variations of the leaflets (Gould et al.,
1973), and that a proper design of the supporting stent
can significantly reduce the flexural stresses (Krucinski
et al., 1993). Patterson et al. (1996) presented a study of
linear and nonlinear isotropic elastic model of the
leaflets during the cardiac cycle, they found that the
nonlinear model was more responsive to time-varying
pressure wave, and induces lower compressive but
higher tensile stresses in the leaflets. Christie and
Medland (1982) and Christie and Barrattboyes (1991)
used membrane and truss elements to simulate aniso-
tropic behaviour of bioprosthetic heart valves. They
found significant stress reductions at the commissures
due to the anisotropy. Rousseau et al. (1988) also
simulated the heart valve with linear anisotropic
viscoelastic behaviour using membrane and truss
elements. Grande et al. (1998, 1999) used the ANSYS
software to analyse the aortic valve with linear ani-
sotropic behaviour. Hart et al. (1998) used the MARC
software to simulate the fibre-reinforced synthetic aortic
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valve prosthesis and found that in peak stress areas of
reinforced models, up to 60% of the maximum principal
stresses is taken over by fibres. Recently, the anisotropic
behaviour (orthotropy) of a pericardium heart valve has
been analysed by Burriesci et al. (1999) using a
commercial package LS DYNA and they have found
that even a small amount of orthotropy can significantly
affect the mechanical behaviour of the valve.

Most of the above studies, however, have over-
simplified or overlooked the nonlinear anisotropic
property of the valve material. This is especially true
when native porcine aortic valve leaflets are used. The
porcine valve leaflets can be regarded as an elastic
meshwork, reinforced with stiff collagen bundles, show-
ing an arrangement in one particular direction (Sauren
et al., 1980). Several uniaxial (Broom, 1977; Rousseau
et al., 1983; Sauren et al., 1983; Mavrilas and Missirlis,
1991; Vesely and Noseworthy, 1992; Vesely and Lozon,
1993; Purinya and Kasyanov, 1994; and Vesely et al.,
1995) and a very few biaxial (Mayne et al., 1989; Billiar
and Sacks, 2000) studies have been conducted on
porcine aortic valve leaflets. These studies showed that
the circumferential elastic modulus of porcine aortic
valve leaflet is about 6 times as large as the radial elastic
modulus (and the difference is even greater in human
aortic heart valves). The reason is due to the particular
microstructure of the heart valve leaflet, because the
collagen fibres in the valve leaflets are mainly oriented in
the circumferential direction. Therefore, porcine heart
valves can be seen as a fibre-reinforced composite, see
Fig. 1. To the best knowledge of the authors, work has
not been done to treat the porcine valve as a composite shell
material where the nonlinear anisotropy can be considered
properly according to experimental observations.

In this paper, a nonlinear anisotropic model for
porcine heart valves is developed based on the uniaxial
experimental study of Mavrilas and Missirlis (1991) and
transversely isotropic composite material model. The
finite element method is used to calculate the stress
distribution of the valve leaflet using the update
Lagrangian method and 8-node nonlinear shell ele-
ments. Results are compared with corresponding
isotropic and linear models. The effect of non-uniform
thickness is also assessed.

The constitutive model is developed in Section 2, the
finite element method is presented in Section 3, followed
by the finite element model of the porcine valve in
Section 4. The results are shown in Section 5. Finally,
discussion and conclusion are given in Section 6:

2. The constitutive model for the porcine heart valve

leaflet

The leaflets of porcine aortic valve are reinforced with
collagen and elastin fibres, and behave like the

anisotropic fibre-reinforced composite. Fibre-reinforced
structure is a simple composite with transverse isotropy,
see Fig. 1, where X is the longitudinal direction of fibre.
The mechanical behaviour of the structure is the same in
Y and Z directions.

A transversely isotropic material has five elastic
moduli, namely, Ex; Ey; nxy; nyz and Gxy; where Ex;Ey

are the Young’s moduli in longitudinal direction X ; and
transverse direction Y ; respectively, nxy; nyz are the
Poisson’s ratios of XY plane and YZ plane, respectively.
and Gxy is the shear modulus of the XY plane.

The nonlinear stress–strain relations for the trans-
versely isotropic material can be written in matrix
form as

fsg ¼ ½DAðEÞ�feg; ð1Þ

where ½DAðEÞ� is the stiffness matrix of the transversely
isotropic composite depends on Young’s moduli, E: The
Young’s moduli can be determined from the porcine
valve experiments. Although there are few biaxial
experiments for the porcine aortic heart valves in
literature (Mayne et al., 1989; Billiar and Sacks, 2000),
the data published are incomplete. Hence as a first step,
a well-established uniaxial experiment by Mavrilas and
Missirlis (1991) for porcine aortic heart valves is used in
this paper. For a typical stress–strain curve of soft
tissues in an uniaxial experiment, the nonlinear elastic
module EðeÞ is a function of strain:

EðeÞ ¼
dsðeÞ

de
: ð2Þ

To extend this in three dimensions, the incremental
stress–strain constitutive equation can be written as

fDsg ¼ ½DAðEð%eeÞ�fDeg; ð3Þ

where %ee is the effective strain, defined as

%ee ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex � eyÞ

2 þ ðey � ezÞ
2 þ ðez � exÞ

2 þ 3
2ðg

2
xy þ g2

yz þ g2
zxÞ

q
ffiffiffi
2

p
ð1 þ nÞ

:

In order to determine the moduli Ex and Ey; and Gxy

using the uniaxial experimental data (Mavrilas and

Fig. 1. A fibre-reinforced composite material model.
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Missirlis, 1991), we assume that both the fibre and the
matrix are isotropic materials with the same Poisson
ratio. As the soft tissue is incompressible, a uniform
Poisson’s ratio is used:

nxy ¼ nyz ¼ 0:45: ð4Þ

Using the law of mixtures formula (Garg et al., 1973),
we have

Ex ¼ EfVf þ EmVm; 1=Ey ¼ Vf=Ef þ Vm=Em; ð5Þ

nxy ¼ nfVf þ nmVm; 1=Gxy ¼ Vf=Gf þ Vm=Gm; ð6Þ

where Vf ; Vm are the proportional volumes of the fibre
and the matrix material, respectively. In this study, we
assume Vf ¼ Vm ¼ 0:5 (Vesely and Noseworthy, 1992).
The moduli with the suffix f and m indicate the property
of the fibre and the matrix material, respectively, while
the suffix x and y indicate the property of the fibre-
reinforced composite in longitudinal and transversal
directions, respectively. As Ex is much greater than Ey; it
can be derived straightforwardly that Gxy ¼ Ey=½2

ð1 þ nxyÞ�:

Again, in order to use the uniaxial experimental
data, we assume that the coupling effects of strains on
x; y directions are small, i.e., the following relations
hold:

Ex ¼ ExðexÞ; Ey ¼ Eyð%eeÞ: ð7Þ

This then allows us to interpolate the experimental data
by Mavrilas and Missirlis (1991) in Fig. 2 using the
following expressions:

Ex ¼ 1927:2e9:827ex ðkPaÞ;

Ey ¼ 118:34e13:20%ee ðkPaÞ: ð8Þ

3. The finite element model

3.1. The finite element method

Because the leaflets of porcine aortic heart valve are
thin and soft, Reissner–Mindlin assumptions (Zienk-
wicz, 1998) and the 8-node shell elements are used. To
define the essential strains and stresses we choose the
local orthogonal axes (x0; y0; z0) on the surface z ¼
constant; where z0 is normal to the surface, x0; y0 are in
the xZ plane. Let ~VV1; ~VV2 and ~VV3 be the unit vectors of
the local orthogonal axes and x

-
and Z- denote the two

unit vectors tangent to x and Z ðz ¼ constantÞ; the
curvilinear coordinates in the middle plane of the shell.
To deal with the fibre-reinforced material, we need to
track the material principle direction (longitudinal
direction of fibre) during the total load phases. In this
paper, we divided the elements in such a way so that Z is
along the longitudinal direction of fibre.

Apply the principle of virtual work and boundary
conditions to Eq. (2) and drop the small higher order
terms, we can write the global matrix equation as

t½K �tþDtfUg ¼tþDt
t fRg �tþDt fFg; ð9Þ

where ½K � is the stiffness matrix, fUg is the displacement
vector, fRg is the load vector and fFg is the force
residual vector. This nonlinear problem is solved
incrementally using the update Lagrangian method.
During each step, a linear algebraic equation is solved
using the modified Newton–Raphson method.

3.2. The geometry of the porcine valve

The shape of porcine aortic heart valve leaflet in
closed and unloaded phase is assumed to be an elliptic
paraboloid (Hamid et al., 1986), see Fig. 3. Following
Hamid et al. (1986), we chose the inner diameter of the
valve to be 27:8 mm; a stent height to be 19 mm and a
surface area to be 5:77 cm2: The finite element mesh is
shown for a whole leaflet in Fig. 4. However, we assume
that the three leaflets are identical and that each one is
symmetric about its own midline, hence only half of a
leaflet is calculated. The element number in the
computation is 900, with 2821 nodes.

3.3. Boundary conditions

We assume that the leaflet is firmly attached to the
stent (line BC) and the stent is rigid, so that displace-
ments are zero but rotations are allowed on this
boundary. Due to the symmetry, the displacement and
the angle of the normal line of leaflet around the midline
AC are set to zero, u ¼ 0;b ¼ 0:

The free edge AB contacts with its neighbouring
leaflets, hence all the nodes on AB cannot move across
the plane y ¼ 601; but can move along axis Z: For the

Fig. 2. Stress–strain diagrams of porcine aortic in the circumferential

and radial directions.
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nodes that already reached the plane y ¼ 601; the incline
restraint condition is imposed: u ¼ v=tg 601: The contact
forces of the nodes on the plane y ¼ 601 are checked in
every increment. If the contact force of a node is tensile,
the node will be released and if the contact force is
compressive, the node remains in contact. This ensures
that the contact is not ‘adhesive’.

3.4. Incremental pressure loading

An uniform systolic pressure of P ¼
16 kPa ð120 mm HgÞ is assumed on the outflow surface
(top-surface) of leaflet, and pressure free is assumed on
the inflow surface (bottom-surface). To achieve the
convergence, an incremental pressure loading is used in
the simulation. Following the change of the nonlinear
Young’s modulus (8), the increment of pressure at the
nth step is chosen as

DPn ¼ P0ecðn�1Þ; ð10Þ

where P0 is the starting pressure, taken to be 0:7 kPa
here, and c is a constant, c ¼ 0:04:

3.5. Code validations

The finite element code has been validated in four
different ways. First, a bench-mark comparison is made
with work by Surana (1983) and Sabir and Lock (1973),
where the nonlinear isotropic cylindrical shell with
concentrated load was analysed. The load–deflection
curve of the cylindrical shell obtained from our code is
in excellent agreement with the results of Surana (1983)
and Sabir and Lock (1973), see Fig. 5.

Secondly, the first principal stress distribution for
isotropic valve is compared with the one from Hamid
et al. (1986), where the membrane model is used. It is
found that although there are small differences in the
location and value of the peak stress due to the different
Young’s modulus and mechanical models used, the
qualitative feature of the stress distributions are similar
in both cases.

It is difficult to find the published result for nonlinear
and anisotropic shells. Hence, we verified our code by
simulating the uniaxial stretch along the longitudinal
and transversal directions, respectively. The calculated
results also present similar uniaxial stretches as it should
be. Thus, the transverse property of the model is
represented correctly by our code.

Finally, different number of the elements and incre-
ment loading steps are used to check if the results are
element and incremental step independent, and to
obtain the best economical choice. There is always a
delicate balance between making the element small

Fig. 3. The geometry model of the porcine aortic heart valve. Left is

the view from the top of the heart valve, right is the side view. BAD is

the free edge; A is the centre point of the free edge; BCD is the

commissure edge; AC is the middle line of the leaflet.

Fig. 4. The finite element mesh of the total leaflet.

Fig. 5. Comparison of load–deflection curves for a cylindrical shell

(h ¼ 12:7 mm) with the ones by Surana (1983) and Sabir and Lock

(1973).
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enough to obtain accurate results and yet large enough
to reduce the computational efforts. It is found that the
results of 30 
 30 (900 elements) and 40 
 40 (1600
elements) are almost identical. Also, the results become
independent to incremental steps for loading over 60
increments. Hence, the mesh with 900 elements and 60
incremental steps are chosen to analyse the half leaflet.

4. Results

The stress distributions of the nonlinear anisotropic
valves are calculated. In the following, the effects of the
isotropy, the nonlinearity, and non-uniform thickness of
the porcine valve leaflets are presented. Usually, the first
principal stresses and maximum shear stresses are used
to analyse the stress distributions for isotropic material,
but for anisotropic material, it makes more sense to
discuss the longitudinal normal stresses, transversal
stresses and shear stresses. Hence, in order to compare
the results of isotropic leaflets with the anisotropic one,
both types of stresses may be shown here.

4.1. The effects of anisotropy with uniform thickness

Fig. 6 shows the fibre directions over the anisotropic
leaflet surface. The leaflet has an uniform thickness of
0:6 mm (Hamid et al., 1986). Stress distribution is
calculated both for the anisotropic and isotropic leaflets.
The Young’s modulus for the isotropic leaflet is assumed
to be half of the circumferential Young’s modulus of
anisotropic leaflet.

Fig. 7 shows the contours of the first principal stress
over the leaflet surface for isotropic (left half) and
anisotropic leaflet (right half). The view is as the leaflet
would appear if it was removed from the stent and laid
out flat; the free (or coapting) edge is the line DAB and
the line DCB is the suture line at the stent frame. It is
seen that the stress distribution of anisotropic leaflet is
quite different from the isotropic one. First of all, the
site of peak stress of isotropic leaflet is found to be
located at the stent apex (D); while the anisotropic peak
stress is located on the commissure edge, much lower
than the isotropic one. The maximum peak stress is
much higher in the anisotropic case, but this is under-
standable, since the anisotropic leaflet has higher
Young’s modulus in the longitudinal normal direction.
This can be seen more clearly in Fig. 8, where the
contours of the longitudinal normal stresses, transversal
normal stresses and in-plane shear stresses are given.
Although the maximum longitudinal normal stresses of
anisotropic leaflet is greater than isotropic one, the
maximum transversal normal stresses and shear stress of
anisotropic leaflet are greatly reduced.

The deformation of the isotropic and anisotropic
leaflets is also different, as shown in Fig. 9. It is clear

that the deformation of the symmetry line AC is greater
in anisotropic leaflet. This is because that the stiffness in
the axial direction is reduced by the anisotropy.

The effective bending moment per unit length is
calculated from the top and surface planes from M ¼
OðM2

x þM2
y �MxMy þ 3M2

xyÞ; where Mx ¼ ðstop
x �

sbottom
x Þh2=12; My ¼ ðstop

y � sbottom
y Þh2=12 and Mxy ¼

ðttop
xy � tbottom

xy Þh2=12: Contours of the bending moment
for both leaflets are given in Fig. 10. We noted that the
maximum bending moment occurs at the location of the
coapting area where the leaflet contacts with another
one. Although not plotted, we found the maximum
compressive stress also occurs there. This is true for both
anisotropic and isotropic cases. The principal difference
between the anisotropic and isotropic ones is that the
former tends to reduce the peak values of the bending
moment and compressive stress.

4.2. The effects of the nonlinearity

The longitudinal normal stress distribution of the
nonlinear anisotropic leaflet with an uniform thickness
of 0:6 mm is shown in Fig. 11. The results are compared
with the stress contours from the corresponding linear
anisotropic leaflet. Three different values of the Young’s
modulus (low Ex ¼ 2483 kPa; middle Ex ¼ 3172 kPa
and high Ex ¼ 5793 kPa; Ex=Ey ¼ 6) is used for the
linear leaflet. It is clear that the maximum stress of the
linear valves increases with the increase of Ex: However,
the site of the peak stress is the same for the linear
leaflets for all different values of Ex: This is different to
the nonlinear case, where the site of the peak stress is
moved up, albeit slightly, towards the stent. The
contours of the stress of the nonlinear leaflet near the

Fig. 6. The fibre arrangement of the leaflet.
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site of the peak stress also seem to be narrower than the
linear ones.

4.3. The effects of the non-uniform thickness

The thickness of the porcine heart valve leaflet is non-
uniform (Clark and Finke, 1974). The pattern of the
stress distribution can be strongly influenced by the
thickness variation of the leaflet. This is investigated by
varying the thickness of the anisotropic leaflet from 0:2
to 1:4 mm; where the thicknesses of A–C are taken from
the measured date by Clark and Finke (1974). The
internal distribution is assumed to parabolic, see Fig. 12.
Results of both isotropic and anisotropic leaflet with
non-uniform thickness is shown in Fig. 13. This should

be compared with Fig. 7. For both cases, the stress
distribution of the non-uniform leaflet seems to be more
homogeneous due the non-uniform thickness. For
isotropic case, the site of the maximum principal stress
remains the same, at point D. However, there is a
secondary maximum principal stress located at the belly
of the valve when the thickness of the valve is non-
uniform. This phenomenon is even more pronounced in
the anisotropic case, where the peak principal stress
actually locates in the belly zone, and the stress at the
commissures is reduced by 43%, see Fig. 7. This is in
agreement with the pathological examination of excised
valves by Carpentier et al. (1976) that the leaflet’s belly
zone to be a common site of tissue rupture and
disruption. There are two major differences between

Fig. 7. The first principal stress distribution of isotropic (left) and anisotropic (right) leaflets. The values on the contours are given in kPa.

J. Li et al. / Journal of Biomechanics 34 (2001) 1279–12891284



Fig. 8. The longitudinal normal stress (top-figures), transverse normal stress (middle-figures) distribution of isotropic (left-figures) and anisotropic

(right-figures) leaflets. The values on the contours are given in kPa.

Fig. 9. The deformations of isotropic (left) and anisotropic (right) leaflets.
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the isotropic and anisotropic ones with non-uniform
thickness. One is that the site peak stress, one locates at
point D, the other locates at the belly zone; the second
one is the higher stress level along the commissures for
the anisotropic valve.

5. Discussion and conclusion

The nonlinear anisotropic finite element computa-
tional model is developed to analyse the porcine aortic
heart valve. The influences of the anisotropy, non-
linearity, and the non-uniform thickness of the
valve leaflets are analysed, respectively. Our results
showed significant changes in the stress patterns due to

Fig. 10. The distribution of bending moment per unit length of isotropic (left) and anisotropic (right) leaflets. The values on the contours are given in

10�3 N mm mm�1:

Fig. 11. The longitudinal normal stress of mid-plane of linear and nonlinear analysis of leaflet. A larger scale of the peak stress area is shown on the

right. The values on the contours are given in kPa.

Fig. 12. The thickness distribution of non-uniform thickness leaflet.

The values on the contours are given in mm.
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the nonlinear anisotropic behaviour of the porcine
valves.

For valves with uniform thickness, it is found that the
anisotropic valve gives rise to much smaller shear and
transversal normal stresses, but greater longitudinal
normal stress located near the commissures just below
the attachment point D. The greater longitudinal
normal stress shows that much of the load is carried
along the longitudinal or fibre direction.

The fact that we found the anisotropy of the valves
enhances the stress concentration at the commis-
sures initially seems to be contradictory to the main
conclusion made by Christie and Medland (1982) using
a membrane model. However, this can be explained by

the fact that their results are presented as membrane
stress only, which is separated from the stress sheared by
the fibre elements. We calculated the whole stress of the
composite material, therefore the stress concentration
should be higher in the area where the material is more
reinforced.

We found that the bending moment and the
compressive stress are located primarily at the contact
area of the leaflet, although the stress level is reduced by
the anisotropic property. This is different from the
observations by Burriesci et al. (1999) where they found
the maximum bending and compressive stresses are near
the commissures. This is because the forces in their time-
dependent model are transmitted from the stent when

Fig. 13. The first principal stress distributions of isotropic (left) and anisotropic (right) leaflets with non-uniform thickness. The values on the

contours are given in kPa.
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the valves are moving dynamically. In our static model,
the contact area experiences the largest bending force
and compressions.

Introducing the nonlinearity in the valves makes two
changes in the longitudinal normal stress distribution.
Compare with the linear valves, it changes the location
of the peak stress, therefore, the possible failure site (if
the failure is directly associated with the static peak
stress); it also changes the distribution of stress pattern.
However, it should be stated that the changes caused by
the nonlinearity are small here, presumably because we
only considered static valves. Non-uniform thickness of
the valve tends to even the stress distribution in both
isotropic and anisotropic cases. This is perhaps the
reason why the nature valves choose to be non-uniform.
The site of the peak stress for the anisotropic valve is
located at the belly zone, while for the isotropic valve it
appears at the attachment point D.

It should be pointed out that our anisotropic model is
based on an uniaxial experiment where only two of the
five Young’s moduli can be determined. It would be
greatly improved if all five Young’s moduli can be
obtained from experiments directly so that approxima-
tions in deriving nx; ny; and Gxy are no longer needed.
Nevertheless, as a first step, this model has provided us
with some new understandings of influences that the
nonlinear anisotropy may have on the mechanical
behaviour of the porcine heart valves.
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