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Abstract. Laboratory experiments designed to shed light on fluid flow through collapsible tubes, a problem
with several physiological applications, invariably give rise to a wide variety of self-excited oscillations. The
object of modelling is to provide scientific understanding of the complex dynamical system in question. This
paper outlines some of the models that have been developed to describe the standard experiment, of flow along
a finite length of elastic tube mounted at its ends on rigid tubes and contained in a chamber whose pressure
can be independently varied. Lumped and one-dimensional models have been developed for the study of
steady flow and its instability, and a variety of oscillation types are indeed predicted. However, such models
cannot be rationally derived from the full governing equations, relying as they do on several crude,ad hoc
assumptions such as that concerning the energy loss associated with flow separation at the time-dependent
constriction during large-amplitude oscillations. A complete scientific description can be given, however,
for a related two-dimensional configuration, of flow in a parallel-sided channel with a segment of one wall
replaced by a membrane under longitudinal tensionT . The flow and membrane displacement have been
calculated successively by lubrication theory, Stokes-flow computation, steady Navier–Stokes computation
and unsteady Navier–Stokes computation. For a given Reynolds number,Re, steady flow becomes unstable
whenT falls below a critical value (equivalently, whenRe exceeds a critical value for fixedT ), and the
consequent oscillations reveal at least one period-doubling bifurcation asT is further reduced. The effect of
wall inertia has also been investigated: it is negligible if the flowing fluid is water, but leads to an independent,
high frequency flutter when it is air. The computations require very large computer resources, and a simpler
model would be desirable. Investigation of the streamlines of the flow and the distribution of viscous energy
dissipation reveals how the one-dimensional model might be improved; but such improvement is as yet
incomplete.

1 The work described here has been supported by the UK Engineering and Physical Science Research Council (formerly SERC)
and by the Academic Development Fund of the University of Leeds, where both authors were for several years in the Department of
Applied Mathematical Studies.
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Foreword (by T.J.P.)

In the 1960s and 1970s Sir James Lighthill more or less single handedly transformed the application of fluid
mechanics to problems in biology and medicine by a series of major research and review papers, notably on
fish swimming, micro-organism swimming, and animal flight. His book,Mathematical Biofluiddynamics,
collected this work together and added important chapters on internal or physiological fluid dynamics; the
chapter on arterial pulse propagation, in particular, is a masterly exposition of the simplest and most powerful
way of analysing the observed phenomena.

In 1968 I returned to England from Johns Hopkins University to work at Imperial College London with Sir
James and in the new Physiological Flow Studies Unit (PFSU) which he had been instrumental in creating
the year before. Soon after I arrived he showed me the results of two experimentalists at the PFSU who
had observed large amplitude, self-excited oscillations while causing water to flow through an elastic tube
under external pressure as a model for blood flow in an artery under an inflated blood-pressure cuff (Ur and
Gordon, 1970). He suggested that I spend 6 months working out the mechanics of those oscillations. At that
time I was unable to make any progress, but I have returned to the problem many times over the years, and
I think we are beginning to gain some understanding.

1. Introduction

Any elastic tube will collapse if it is squeezed hard enough. If a long segment of uniform elastic tube is
subjected to different levels of transmural (internal minus external) pressure,ptm, the cross-sectional shape
and area,A, will vary as sketched in Figure 1. Whenptm is large and positive, the cross-section will be
circular and rather stiff because the perimeter must be stretched in order to increaseA. As ptm is lowered,
a critical value is passed at which the circular cross-section buckles, becoming at first elliptical and then
more significantly deformed. During this phase a thin-walled tube is very compliant (large area change for
small pressure change) because only wall bending is required for a change of shape and hence area. At very
low values ofA the tube is almost totally collapsed and becomes stiff again. During the compliant phase,
even the small pressure changes associated with flow through the tube (viscous or inertial) can be enough
to cause collapse.

The collapse of compressed elastic tubes conveying a flow occurs naturally in several physiological

Figure 1. Sketch of the “tube law” for a collapsible tube, relating
transmural pressurẽP and cross-sectional areaA. Sketches of the
cross-sectional shape are given for three regions of the curve.
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Figure 2. Sketch of the standard laboratory experiment.P1, Q1

are pressure and flow rate upstream of the collapsible segment;P2,
Q2 are pressure and flow rate downstream;Pu is total pressure far
upsteam;Pe is pressure in the chamber surrounding the collapsible
segment.R1 andR2 represent the rigid pipes up- and downstream,
whose resistance can be prescribed.

applications. Examples include: (i) Blood flow in veins, either above the level of the heart where the internal
pressure may be subatmospheric because of the effect of gravity (the jugular vein of the giraffe is particularly
interesting in this context (Pedleyet al., 1996)), or being squeezed by contracting skeletal muscle as in the
“muscle pump” used to return blood to the heart from the feet of an upright mammal. (ii) Blood flow in
arteries, such as intramyocardial coronary arteries during the contraction of the left ventricle, or actively
squeezed by an external agency such as a blood-pressure cuff. (iii) Air flow in the large intrathoracic airways
of the lung during a forced expiration or cough, because an increase in alveolar air pressure, intended to
increase the expiratory flow rate, is also exerted on the outside of the airways. In this case, increasing alveolar
pressure above a certain level does not increase the expiratory flow rate, a process known asflow limitation.
(iv) Urine flow in the urethra during micturition, where flow limitation is again commonplace. These and
other examples are discussed in greater detail by Shapiro (1977a,b). Note that in all the cases mentioned the
Reynolds number of the flow (Re) is in the hundreds or higher.

Many workers have performed laboratory experiments on nominally steady flow through collapsible
tubes. In the standard experiment a segment of collapsible (e.g., rubber) tube is mounted at its ends on rigid
tubes and contained in a chamber whose pressure,pe, can be independently controlled; the behaviour of the
system depends on two independent pressuredifferences, e.g.,pu−pd andpe−pd. Some early experimental
studies sought to characterize the collapsible tube by plotting the pressure difference along it (∆p = p1−p2:
see Figure 2) against the flow-rate,q; there was some confusion in the literature because it was not always
clear which controlled pressure difference was being varied, as flow rate was varied, and which was held
constant. Three different examples, in each of which the shape of the∆p − q curve is quite different, are
shown in Figure 3(a,b,c), taken from Brecher (1952), Bertram (1986), and Conrad (1969), respectively. For
explanation of the different curves see Kamm and Pedley (1989).

In almost all such collapsible tube experiments withRe & 200, ranges of parameters were found in which
steady flow could not be achieved but, instead, large-amplitude, flow-induced oscillations were observed.
Bertram and his colleagues (1982, 1986, 1990, 1991) have made probably the most systematic series of
experiments on self-excited oscillations in collapsible tubes, recording as functions of time the pressures
(p1, p2) and flow rates (q1, q2) at the upstream and downstream ends of the collapsible segment, and the
cross-sectional areaAn at the narrowest point. Examples of some of the measurements ofp2(t) for various
parameter values are shown in Figure 4; a great variety of oscillatory behaviour is exhibited. Bertramet al.
(1990) have tried to map out the associated control space diagrams, to identify regions in which different
types of oscillation arise. All that can be said in summary is that a finite length of compressed collapsible tube
conveying a flow represents a dynamical system of remarkable richness and complexity. It would clearly
be of great interest to be able to model the system theoretically and hence understand it physically. That
interest is independent of any relevance, though it should be noted that flow-induced oscillations do arise
in some of the physiological applications: wheezing during forced expiration; the Korotkov sounds listened
for during blood pressure measurement with a cuff; and “cervical venous hum” (Danaky and Ronan, 1974)
are but three examples.
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Figure 3. Pressure dropp1 − p2 along the collapsible segment, plotted against flow-rateq for three different conditions: (a)pu − pe

held constant (from Brecher, 1952); (b)pe− p2 held constant (from Bertram, 1986); (c)pe− pd held constant (from Conrad, 1969).
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Figure 4. Pressure,p2, at the downstream end of the collapsible segment, plotted against timet during self-excited oscillations for
various values of the governing parameters (from Bertramet al., 1991).

2. Zero- and One-Dimensional Models

The earliest and simplest theoretical models of collapsible-tube flow were lumped-parameter or zero-
dimensional models, in which the relevant variables were functions only of timet, and satisfied non-linear
ordinary differential equations. The geometry of the whole collapsible segment would be represented, say,
by the cross-sectional area at the narrowest point,An(t), and the other variables would be the pressure at
that point,pn(t), together with the measurable quantitiesp1(t), p2(t), q1(t), q2(t). The variables were linked
by dynamical equations representing conservation of mass and momentum, together with atube law(Figure
1) relating the transmural pressurepn − pe and the areaAn, but only at the narrowest point. The system
of ordinary differential equations was typically of second or third order (Conrad, 1969; Schoendorfer and
Shapiro, 1977; Pedley, 1980, Chapter 6; Bertram and Pedley, 1983), though the well-known model of Katz
et al. (1969) was of fifth order. Some authors, in the days before modern dynamical systems theory, were
content to imply that, since both their experiments and their model produced oscillations, the problem was
solved. Because many real mechanical features cannot be incorporated in lumped-parameter models, we do
not discuss them further here.

The next level of sophistication is a one-dimensional model, in which the pressurep and the longitudinal
velocityu, both averaged across the tube cross-section, together with the cross-sectional areaA, are regarded
as functions of the longitudinal co-ordinatexand timet. For steady flow, withoutt-dependence, the governing
equations have traditionally been taken to be the following (Shapiro, 1977a):

conservation of mass
d

dx
(uA) = 0, (1)

conservation of momentum u
du

dx
= −1

ρ

dp

dx
−R(A, u)u, (2)

elasticity (tube law) p− pe = P̃ (A), (3)

where the functioñP (A) represents the tube law (Figure 1). In (2) the body-force term has been omitted since
the longitudinal component of gravity is equivalent to a gradient in external pressure,pe. The convective
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inertia term does not include the contribution from the non-flat velocity profile, which can in general be
incorporated into the term,Ru, representing viscous resistance;R is assumed to be positive. The set of
equations (1)–(3) are exactly analogous to those for water flow in shallow channels with a free surface.

Henceforth we takepe to be constant. Eliminatingp from (2) and (3) we find the rate of change ofA with
distance to be

dA

dx
=
−RuA
c2− u2

, (4)

where

c2 =
A

ρ

dP̃

dA
. (5)

It can readily be shown thatc is the speed of propagation of long, small-amplitude pressure (or area) waves
along the tube when its cross-sectional area isA (Lighthill, 1975). Suppose that, at an upstream station, the
tube is circular andu < c. Then (4) shows thatdA/dx is negative. Now the flow rateuA = q is constant
so, asA decreases,u increases; moreover the slope of the tube law, and hencec, will if anything decrease,
soc2− u2 becomes smaller. HencedA/dx becomes more negative. If the tube is long enough, a point will
in general be reached at whichu is predicted to be equal toc sodA/dx = −∞. By this stage, referred to
aschoking, the steady flow model will clearly have broken down: steady flow at the proposed flow rateq,
from the postulated upstream conditions, is not possible. Ifq and the upstream area are held fixed, and the
model is a correct one for steady flow, then unsteady behaviour must follow. A number of authors (e.g.,
Brower and Scholten, 1975) have gone further and suggested that the presence of a point at which the fluid
speed is equal to the wave speed is the prime mechanism for the initiation of unsteady behaviour—i.e., of
self-excited oscillations.

However, the one-dimensional model contained in (1)–(3) must break down anyway, even without chok-
ing, in order to describe the experiment depicted in Figure 2, becausedA/dxwould have to become positive
again near the downstream endx = l. Cancelli and Pedley (1985) added two new features, both of which
should be important in the region downstream of the narrowest point. One was longitudinal tension in the
tube wall, the simplest model for which causes (3) to be replaced by

p− pe = P̃ (A)− T d
2A

dx2
. (6)

In the highly collapsed region the tube wall resembles two flattish membranes under tension, with longitudinal
curvature roughly proportional tod2A/dx2. It was felt that the addition of extrax-derivatives would enable
more boundary conditions to be applied, such asA(`) = A(0) = A0. The other new feature was the
recognition that flow through a constriction will separate, a process leading to enhanced energy loss and
therefore substantially incomplete pressure recovery in the region downstream of the narrowest point . The
energy loss downstream of the narrowest point had already been identified as important in lumped-parameter
models (Pedley, 1980). Cancelli and Pedley (1985) used momentum arguments to suggest that a reasonable,
yet still simple, model of the energy loss could be achieved by replacing equation (2), downstream of the
narrowest point, by

χu
du

dx
= −1

ρ

dp

dx
, (7)

whereχ is a non-negative quantity, less than 1; in their (unsteady) calculations Cancelli and Pedley took
χ = 0.2.

The steady flow model described by (1), (6) and (7) with

P̃ (A) = Kp(1− α−3/2) for α < 1 (8)

= Kpk(α− 1) for α > 1

(whereα = A/A0, Kp is a constant, and the−3/2 power in the last term comes from a similarity solution
derived for smallα by Flahertyet al. (1972)), was exhaustively analysed by Jensen and Pedley (1989).
These authors neglected the direct viscous termRu, takingχ = 1 for 0< x < xs (the unknown point of
flow separation, taken to be identical with the narrowest point at sufficiently high Reynolds number) and
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Figure 5. Stability boundaries for the first two modes of instability,
plotted on the dimensionlessP–Q plane (P ∝ pe− p2; Q ∝
q), as predicted by the one-dimensional model of Jensen (1990).
The Hopf bifurcations are subcritical where the curves are dotted,
supercritical elsewhere; (i) and (ii) are mode crossing points.

χ = constant≤ 1 for xs < x < l. Their principal results can be summarized as follows:

(i) When χ = 1 everywhere, i.e., there is no energy loss in the collapsible tube downstream of the
narrowest point, then there exists a critical value of the flow rateq, dependent on the longitudinal
tensionT , above which the steady problem has no solution. In other words, the presence of longitudinal
tension alone does not abolish choking; this should not have been a surprise: in the same way, surface
tension does not abolish critical behaviour in shallow-water channel flow.

(ii) However, whenever there is any downstream energy loss, i.e.,χ < 1 for xs < x < l, then a steady
solution exists for all positive values of flow rateq and tensionT . Since some such energy loss
in inevitable, it follows that the breakdown of steady flow is not caused by choking, i.e., the non-
existence of a steady flow at the chosen parameter values, but must arise through instability of the
steady solution.

Jensen (1990) gave a detailed linear, and weakly non-linear, analysis of the instability of the steady flow.
He used the same one-dimensional model with the addition of time derivatives,∂A/∂t and∂u/∂t, on the
left hand sides of (1) and (7) respectively. The elasticity equations (6) and (8) remained unchanged. When
appropriately non-dimensionalized, Jensen’s model has two principal governing dimensionless parameters,
in addition toχ (which was fixed at a value of 0.2 in all numerical computations):Q, which is proportional
to the flow rateq, andP , proportional to the transmural pressure,pe − p2, at the downstream end of the
collapsible segment when the flow is steady. Other parameters describe the resistance and inertance of the
upstream and downstream rigid segments; these were kept fixed throughout. Figure 5 shows the computed
stability boundaries in theP–Q plane, for the first two instability modes found. The general shape, showing
stable steady flow for sufficiently smallP at allQ (the tube remaining effectively open), and for sufficiently
smallQ at all P (the tube being collapsed whenP is large enough), is in qualitative agreement with the
control diagrams plotted by Bertramet al. (1990). So too are the presence of mode crossing points (i)
and (ii) and the existence of several regions in parameter space in which different behaviour of the system
is to be expected. Jensen’s weakly non-linear analysis showed that both modes become unstable through
supercritical Hopf bifurcations everywhere except for the small segments of the stability boundaries marked
as dotted in Figure 5, where they are subcritical Hopf bifurcations.

In a subsequent paper Jensen (1992) showed some results of a numerical integration of the fully non-linear
one-dimensional equations, at a few selected points in parameter space, near the upper left mode crossing
point in Figure 5. Some of the computed time series, ofp2(t) = p(l, t) for example, look quite similar to
the measurements of Bertramet al. (1990). It is clear that this one-dimensional model contains much that
is relevant to the self-excited oscillations of real collapsible tubes in the laboratory. It would be possible to
extend Jensen’s (1992) full non-linear computations to cover the whole of parameter space, and map out the
behaviour in as much (or more) detail as has been done experimentally.

However, this has not been done, and should not, because of the severea priori weaknesses of the one-
dimensional model as a scientific description of the real system. First, the solid mechanics of (6) and (8) is
an extremely crude representation of the non-axisymmetric, large deformation of a cylindrical shell under
prestretch, external pressure, and the stresses exerted by internal flow. Second, the fluid mechanics is also
extremely crude, primarily because of thead hocway of representing flow separation and the processes
of energy loss/pressure recovery downstream of the constriction. This is especially weak in unsteady flow,
since the arguments leading to (7) were based on steady flow (Cancelli and Pedley, 1985) and take no
account, for example, of the time delay between the emergence of a sufficiently adverse pressure gradient
and the breakaway of previously attached flow (see the experiments of Bertram and Pedley (1983)). What is
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required is a solution of the unsteady, three-dimensional Navier-Stokes equations, coupled to the equations
for the unsteady, three-dimensional, large-deformation theory of highly compliant shells. Numerical codes
for the solution of such problems are not yet available in any branch of computational mechanics, and would
require resources in excess of any available to us. The nearest we have been able to approach is to solve the
full shell-deformation problem with steady viscous flow in the tube described by lubrication theory (Heil
and Pedley, 1996) so that oscillations cannot arise.

3. Two-Dimensional Models

Instead of attempting the full three-dimensional problem, we have sought a sound scientific solution for
a simpler, two-dimensional configuration which is nevertheless in principle realizable experimentally. The
configuration is sketched in Figure 6. A two-dimensional channel consists of two parallel, rigid planes,
distanceh0 apart, from one of which a segment of lengthLh0 has been removed and replaced by a thin
membrane, with no bending stiffness or inertia but under longitudinal tensionT . Steady, plane Poiseuille
flow with flow rateq enters far upstream. The external pressure takes a constant value,pe, referred to the
pressure at the far end of the downstream rigid segment.

In all the following discussion, lengths are made dimensionless with respect toh0, and the position of the
membrane is given by

y = h(x, t), 0≤ x ≤ L, (9)

whereh(0, t) = h(L, t) = 1.
The first approach to this problem (Pedley, 1992) was based on lubrication theory, assuming negligible

fluid inertia, steady flow and small wall slope: a one-dimensional model for low Reynolds number flow, but
rationally derivable from the full equations of motion. The main innovation of that paper was its inclusion
of the fact that the longitudinal tension in the membrane falls with downstream distance as a consequence
of the viscous shear stress exerted by the fluid. However, the results were not qualitatively very different
between the constant and variable tension cases, except whenT fell close to zero. The main conclusion was
that the steady problem has a solution, for all values ofq andpe, as long asT remains positive everywhere.
For given positive values of longitudinal tensionTD and transmural pressurepe− pD at the downstream
end of the membrane (see Figure 6), the membrane is collapsed everywhere (h < 1 for all 0< x < L) for
sufficiently small flow rateq, but exhibits a bulge outwards at its upstream end whenq exceeds a critical
valueqb. In these respects, the conclusions are the same as from the high Reynolds number one-dimensional
model discussed above.

Even for low Reynolds number flow, the lubrication theory analysis was not uniformly valid because
the wall slope became large at the downstream end in cases for whichTD was small. The next stage
was therefore a numerical solution of the Stokes equations, coupled to the membrane equations. This was
performed iteratively by Lowe and Pedley (1995), who used the finite element method to solve for the
flow with the membrane position assumed given, calculated the pressure and shear stress exerted on the
membrane, and then updated the membrane position by requiring that the membrane equilibrium equations
be satisfied, and so on. This procedure led to predictions of membrane shape, for given values ofq, TD and
pe− pD, which agreed remarkably well with the lubrication theory results even when the wall slope was
quite large, but failed to give a solution for sufficiently small (but positive) values of membrane tension. We
attribute this failure at smallTD to a poor iteration scheme for very compliant boundaries.

We now formulate the general problem for unsteady flow, although the next computation to be described
will be for steady flow at non-zero Reynolds number (Luo and Pedley, 1995). The full governing equations
and boundary conditions for the unsteady problem, in dimensionless form, are as follows, where velocities

Figure 6. Sketch of the two-dimensional model problem.
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are made non-dimensional withu0 = q/h0, time with h0/U0, stresses withρU2
0 (ρ is fluid density), and

wall tension withρU2
0h0; the Reynolds number isRe = ρU0h0/µ (µ is fluid viscosity) and the summation

convention is used over suffixesi, j = 1,2.

Navier-Stokes ui,t + ujui,j = −p,i +Re−1ui,jj , (10a)

Conservation of massui,i = 0. (10b)

Boundary conditions (refer to Figure 6): onAB (x = −Lu),

u1 = 6y(1− y), u2 = 0; (11a)

onEF (x = L +Ld),
− p +Re−1u1,1 = 0, u2 = 0; (11b)

onBC,DE,AF (y = 1 for x < 0 orx > L; y = 0 for all x),

u1 = u2 = 0; (11c)

onCD (y = h(x, t),0≤ x ≤ L)

u1 = u2 = 0 (steady), (12a)

ui = velocity of membrane (unsteady), (12b)

pe− σn = Thxx(1 +h2
x)−3/2, (12c)

−σt = ∂T/∂s. (12d)

In the membrane equations (12c,d),σn andσt are the normal and tangential components of the stress exerted
by the fluid on the membrane ands is the distance measured along the membrane. There should, in addition,
be an equation relating the tension of each element of the membrane to its extension, but in this work we
have assumed thatT is independent of time,t, which is equivalent to assuming that the tension is sufficiently
large for length variations to cause negligible changes inT . That suggests that the tension is also sufficiently
large for the longitudinal variation to be negligible, so from henceforth we ignore condition (12d) and take
T in (12c) to be a constant. The computations have confirmed that the overall length changes are no more
than± 4%, even during the most vigorous oscillations found (Luo and Pedley, 1996).

Although the non-dimensionalization described above is the most convenient for numerical solution, it is
not convenient for the presentation of results becauseU0 appears in the scalings forpe andT . In presenting
the results, therefore, we take

T = T0/βRe
2, pe = pe0/γRe

2, (13)

whereT0 andpe0 are reference values, and increasingβ or γ alone is equivalent to decreasingT or pe at
fixed Reynolds numberRe.

Steady flow at finiteRewas computed independently by Luo and Pedley (1995) and by Rast (1994), who
both used the finite element method for the fluid flow, but used quite different techniques for coupling it to
the membrane displacement. Luo and Pedley (1995) used the commercial flow solver FIDAP and iterated for
the wall position in the manner described above in the context of Stokes flow. Rast (1994), on the other hand,
used a finite element mesh which was coupled automatically to the membrane displacement by the method
of spines (see Ruschak, 1980), and the membrane equation (12c) was discretized and solved simultaneously
with the flow equations using Newton’s method. The authors of both papers reported extensive accuracy
tests, such as the effect of mesh refinement and adjustment of the location of the downstream boundary (i.e.,
the value ofLd), not only on membrane shape but also on the wall vorticity distribution, always one of the
most sensitive tests of a CFD code. The best tests of all were agreement (a) between the results of the two
computations and (b) with those of Lowe and Pedley (1995) at lowRe (see Loweet al., 1996).

Both approaches to the steady problem, like Lowe and Pedley (1995), failed to find a convergent solution
for sufficiently small, but positive, values ofT (or sufficiently largeβ: (13)). Luo and Pedley (1995) discussed
whether the breakdown was associated with the corner singularity at the upstream end of the membrane
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(point C on Figure 6) when the membrane began to bulge out there. (Note the appendix to Lowe and
Pedley (1995), in which Moffatt’s (1964) corner solution is extended to the case where one of the walls
is a membrane under tension.) However, Rast (1994) and more recent computations of our own (Luo and
Pedley, 1996) have found converged solutions with upstream bulging; breakdown occurs at a much lower
tension (for givenRe) than bulging. We have concluded that such problems are extremely ill-conditioned
when the boundaries are highly compliant (cf. free-surface flow (Ruschak, 1980)).

Steady Flow Results

Just the main features of the results are presented here; more details can be found in the original papers.
One general finding is that qualitatively similar behaviour is obtained whenRe is increased at fixed tension
(β) as when tension is decreased (β increased) at fixedRe. In what follows we fixRe at the value 300
and varyβ. Other dimensionless parameters (chosen for comparison with previous papers) are taken to be:
L = 5, Lu = 5, Ld = 30, T0 = 1.61× 107, pe0 = 9.3× 104 andγ = 1.

The membrane displacement for various values ofβ is plotted in Figure 7. At smallβ (largeT ) the
membrane is stretched tight and is not deformed. Asβ is increased, the deformation increases, the minimum
channel widthhmin occurring close to the mid-point of the membrane. As the constriction becomes more
severe, it tends to move downstream and a point of inflection appears in the upstream half. Whenβ increases
above about 30 two, possibly independent, phenomena are seen: the upstream part of the membrane begins
to bulge out and the constriction, while continuing to move downstream, ceases to become more severe. In
fact,hmin increases somewhat asβ increases. The membrane slope becomes very large.

Both the above phenomena are also seen in the corresponding high-Reynolds-number one-dimensional
model, which is exactly that of Jensen and Pedley (1989) described above ((1), (6), and (7)) but withh for
A andP̃ (A) ≡ 0. Indeed, the shape of the graph ofhmin againstβ predicted by that model is very similar to
that given by the full computation, as shown in Figure 8; the value ofβ at which bulging is first predicted is
particularly close. The same is true at all Reynolds numbers from 50 to 500 (Luo and Pedley, 1995) though,
asRe is decreased,hmin also falls, and occurs at largerβ (smallerT ). The one-dimensional model appears
to be better than it deserves to be, at least in steady flow.

Figure 7. Predictions of steady membrane shape atRe = 300
and various values of tension parameterβ(∝ 1/T ), from Luo and
Pedley, 1996).

Figure 8. Predictions of minimum channel width during steady
flow, plotted againstβ for fixedRe(= 300). Bold solid and broken
curves, from the two-dimensional computations; fine solid and bro-
ken curves, from the one-dimensional model. The broken curves
represent steady states that are subsequently found to be unstable.
Circles mark the value ofβ at which upstream bulging first appears.
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Unsteady Results

Extension of the above studies to time-dependent flow and membrane displacement required extensive
development of the computational scheme.

The fully coupled finite element method of Rast (1994) was extended to deal with time dependence.
The mesh was taken to be time-dependent, but based on fixed spines; Newton’s method was used to obtain
convergence at each time step. Details are given in Luo and Pedley (1996). The main difficulty concerned
the kinematic boundary condition (12b), because it is necessary to track boundary points as they move, and
that is not possible in the absence of a description of membrane elasticity. The boundary condition was
eventually based on the assumption that elements of the membrane always move in a normal direction; this
is not strictly true, but is reasonable. To check the importance of this boundary condition, we compared
the results with those obtained with the even simpler assumption that boundary points move only in the
y-direction. This is clearly less satisfactory (e.g., near the downstream end of the membrane) but fortunately
there was not much difference in the results.

The unsteady code was used to investigate the stability of the steady solutions already computed (Luo
and Pedley, 1996). The procedure was to start with a steady solution at a particular value ofβ, then increase
the value ofβ by a small amount and start the computation; the initial condition was therefore a small
displacement from the steady solution at the new value ofβ. For values ofβ less than a critical valueβc

(≈ 27.5 forRe = 300), the perturbation dies away, revealing the steady solution to be stable. Forβ > βc, the
perturbation grew and finite-amplitude oscillations ensued, showing that there had been a Hopf bifurcation.
Examples of the behaviour are given in Figure 9, which shows the wall displacementh as a function of

Figure 9. Membrane displacementh at fixedx = 3.5 as a function of time during self-excited oscillations.Re = 300; (a)β = 30.0,
(b) β = 32.5, (c)β = 35.0.
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time at a fixed value ofx (x = 3.5, close to the site of greatest constriction in the steady solution) and
for three values ofβ. Forβ = 30.0, Figure 9(a) shows an approximately sinusoidal oscillation, as is to be
expected for a slightly supercritical value ofβ, with period 11.7 time units. However, forβ = 32.5, Figure
9(b) shows a few cycles of adjustment, followed by a (nearly) periodic oscillation, of period 21–25, in
which large maxima and minima alternate with small ones. It seems clear that the system has gone through
a period-doubling bifurcation. Finally, Figure 9(c) shows the wall motion forβ = 35.0; the wave-form is
again more complex, indicating that at least one further bifurcation has occurred. We conclude that even
this simple, two-dimensional, constant-tension model is an interesting dynamical system which may well
incorporate some of the complexities of real collapsible tube flow.

Effect of Wall Inertia

Real membranes have mass, so it is important to see whether wall inertia has a significant effect on the
computed oscillations. Wall inertia can be included (approximately) by adding a term−mhtt to the right-
hand side of (12c), where

m = ρww/ρh0 (14)

andρw, w are the density and thickness of the membrane. Estimates for a thin rubber membrane suggest
thatm = 0.01 is a reasonable value when the flowing fluid is water andm = 0.1 or greater when it is air. The
computations and results are described in detail by Luo and Pedley (1997). In brief, puttingm = 0.01 makes
essentially no difference to the results reported above, butm = 0.1 has a considerable effect. Examples are
shown in Figure 10. Atβ = 30 (Figure 10a), the regular oscillations are set up as before, but are gradually
swamped by a high-frequency flutter which eventually grows to such large amplitude that the code breaks
down. Even atβ = 25 (Figure 10b), a previously stable state, high frequency flutter develops and grows
large. These findings are consistent with those of experimentalists who have used air as well as water as the
fluid flowing in a collapsible tube (e.g., Sakurai and Ohba (1986) compared with Ohbaet al. (1984)).

Streamlines and Energy Dissipation

We revert now to the case of no wall inertia, in an attempt to understand the mechanism of the instability
and oscillations. In Figure 11 we show the streamlines of the flow at various times during the oscillation
cycle in just one case, that ofRe = 300, β = 32.5 (Figure 9(b)). The important point to note is that the flow
separation downstream of the narrowest point does not occur always at or near that point, as it would if
the flow were quasi-steady. Moreover, waves are seen to be generated and to propagate downstream in the
rigid channel downstream of the oscillatory membrane. These are clearly the same as the vorticity waves
observed and analysed by Pedley and Stephanoff (1985); not only do they look the same, but the wavelength
λ ≈ 3.6 of the nearly sinusoidal oscillations of period≈ 11.5 atβ = 30 is comparable in magnitude with

Figure 10. Membrane displacementh atx = 3.5 as a function of timet in the presence of wall inertia. Solid curves,m = 0.1; dotted
curves,m = 0.Re = 300; (a)β = 30.0, (b)β = 25.0.
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Figure 11. Streamline plots at various times during self-excited oscillations forRe = 300,β = 32.5.

those measured by Pedley and Stephanoff. Their run 5 withRe = 487 and the inverse of the dimensionless
oscillation period,St,= 0.77 had wavelength≈ 2.6; that was the shortest wavelength observed by those
authors, corresponding to the highest value ofSt—theory suggests thatλ ∝ St−1/3. (Note that what we
call vorticity waves, because they are formed by the time-dependent, inviscid distortion of an oncoming
flow with a non-zero vorticity gradient (cf. Rossby waves), are also an example of large-amplitude, inviscid
Tollmien–Schlichting waves.) The streamline plots make it look as if the coupling between the vorticity
waves and the flow separation process is somehow important for the latter, and hence for the separated flow
energy loss that, according to the one-dimensional model, is a crucial feature in the system.

However, if we compute the rate of energy dissipation per unit volume,Φ = µui,j(ui,j + uj,i), we are
led in a different direction. Figure 12 shows contours ofΦ for the same case and at the same times as the
streamline patterns in Figure 11. The remarkable feature is that, at almost all times, the highest rates of
energy dissipation occur in viscous boundary layers, on the membrane and on the opposite wallupstreamof
the point of greatest constriction, not downstream as postulated by Cancelli and Pedley (1985) and used in
the subsequent one-dimensional models. There are occasional pockets of high dissipation, at the edges of the
primary separated eddy and associated with the vorticity waves, but most of the dissipation is upstream. The
volume integral ofΦ over four equal segments of tube (0< x < 4, 4< x < 8, 8< x < 12, 12< x < 16)
shows that the upstream segment contains the most dissipation all the time (Figure 13). The same is true for
β = 30 (a fortiori), and forβ = 35 except for a brief phase when the second segment, associated with the
first separated eddy, has the most dissipation (see the corrigendum to Luo and Pedley (1996)).

A good physical explanation for the above findings still eludes us. Part of the difficulty is that the full
time-dependent computations require very large computer resources, so we cannot examine parameter space
in any detail. Instead, what we would like to do is to use the information obtained so far, especially that
concerning energy dissipation, to develop a new one-dimensional model that is more soundly based than its
predecessors.
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Figure 12. Contours of energy dissipation rate for the same parameters and times as the streamlines of Figure 11.

Towards a New One-Dimensional Model

The principal weakness of the old one-dimensional model, described in Section 2, is its treatment of loss
terms in the longitudinal momentum equation. According to (7), energy dissipation is neglected upstream
of the point of flow separation, and downstream of it is modelled very crudely. The separated flow energy
loss is taken to be proportional to−∂ū2/∂x, whereū is the dimensionless longitudinal velocity, averaged
across the channel. Amongst other things, that means that the dissipation comes to an end when the flow
enters the downstream rigid channel, in which the pressure drop is taken to be given by a known non-
linear resistance and linear inertance (Cancelli and Pedley, 1985). The full numerical solution shows that
the primary separated eddy usually extends well into the rigid channel (see Figure 11) where, at least in
unsteady flow, there are vorticity waves. Ideally, the new model will incorporate: calculation of the effects

Figure 13. Total energy dissipation for four different segments
of channel, plotted against time (Re = 300, β = 32.5); – – –,
0< x < 4; · · ·· · ·, 4< x < 8; –·– · – ·, 8< x < 12; –· · · – · · · –
, 12< x < 16; ——, total dissipation for 0< x < 16. Straight
lines at the right give the dissipation in the corresponding steady
flow. (From corrigendum to Luo and Pedley, 1996).
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Figure 14. Sketch of the features that need to be incorporated in
a new one-dimensional model.

of strong viscous boundary layers upstream of the point of flow separation,XS (see Figure 14); prediction of
that separation point and the reattachment pointXR, as functions of time; calculation of the contribution of
the separated eddyS to the momentum equation; sufficient understanding of the coupling between vorticity
wave generation and flow separation.

Some understanding of the separated eddy has been acquired by Ikeda and Matsuzaki (1997). They
performed an experiment similar to that of Pedley and Stephanoff (1985), in which steady flow in a plane
channel passed a known indentation which was either fixed or oscillating in a prescribed way with small
amplitude. They tried to pinpointXS andXR using flow visualisation, and they measured the pressure
distribution along the plane wall (y = 0) as a function of position and time. They found that the measured
pressures agreed well with those predicted from a model in which the separated eddyS was given a known
shape, similar to that sketched in Figure 14: almost parallel-sided for most of its length, before a rapid
termination atXR. The flow was taken to be unidirectional in the core of the channel, with zero velocity
in the eddy. The weakness of their model, from a predictive point of view, is that the positions ofXS and
XR have to be taken from experiment; moreover, they were taken to be unchanged from their steady values
during the small-amplitude oscillations. (Ikeda and Matsuzaki recognized the weakness, and proposed a
method of predictingXS, at least in steady flow: see below.) The Ikeda and Matsuzaki model gives us some
help in proposing a new model.

The equation of conservation of mass and the membrane equation will be the same as in previous models:

ht + (ūh)x = 0, (15)

pe− p = Thxx(1 +h2
x)−3/2, (16)

where the same non-dimensionalisation has been used as for the full two-dimensional equations and the
viscous component of the normal stress (12c) has been neglected (it is in any case zero when the membrane
is at rest). Thex-momentum equation, integrated across the channel width, gives

ūt + ūūx +
1
h

∂

∂x

[ ∫ h

0
u′2 dy

]
= −px +

Re−1

h
[u′y]

h
0 , (17)

where the longitudinal velocityu(x, y, t) = ū(x, t)+u′(x, y, t), the pressure is assumed to be uniform across
the channel, and longitudinal viscous diffusion has been neglected. The one-dimensional model would be
complete if we had a rational way of linking the third and fifth terms in (17) to ¯u, h andp, everywhere in
the channel.

The procedure suggested by Ikeda and Matsuzaki (1977) for predicting the separation pointXs, in steady
flow on a prescribed indentation, is to use the Karman–Pohlhausen approximation in which the velocity
profile is replaced by a quartic polynomial in a suitably scaled transverse co-ordinate. Extending the idea to
the time-dependent case in which the indentation is not prescribed, this means writing

u

ū
= aη4 + bη3 + cη2 + dη, (18)

whereη = y/h anda, b, c, d are functions ofx and t. The no-slip conditionu(x,0, t) = 0 is identically
satisfied. The four functionsa, b, c, d can be determined in terms of ¯u, h andp and their derivatives from
four equations representing: the no-slip condition ony = h (which can be taken to beu = 0 if we assume
the wall motion to be entirely in they-direction): the definition of ¯u = (1/h)

∫ h
0 u dy; and the differential
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x-momentum equation evaluated aty = 0 andy = h. Then substituting (18) into (17) gives the third partial
differential equation linking ¯u, h, andp, to go with (15) and (16).

It might seem that this procedure could be used over most of the length of the membrane, marching
forward from upstream boundary conditions thath = 0 atx = 0, and that the upstream velocity profile is
parabolic. However, that is not possible because we do not know the relationship between the values ofp so
computed, and that ofpe, which is known only relative to the zero pressure far downstream. It is essential,
therefore, to find a way of linking the pressure field under the membrane to that in the downstream rigid
segment; i.e., we need a model of the primary separated eddy and the vorticity waves.

In steady flow, the Ikeda–Matsuzaki model again gives a hint: if there is zero velocity in the separated
eddyS and parallel flow outside it, then the pressure will be uniform, and equal to its value atXS. The
consequence is that, fromXS to x = L, the membrane will form part of a circular arc. It only remains
to predict the location ofXS andXR and to model the pressure drop - flow rate relation downstream of
XR. The traditional way of predictingXS, in steady flow, is to say that it occurs where the wall shear rate
uy|y=h is zero, and that was done by Ikeda and Matsuzaki (1997). A more rational choice would be to take
separation to occur wheredp/dx = 0, but in any case we have no correspondingly simple way of choosing
XR. Nevertheless, we have applied this new model, for steady flow, by fixing the downstream transmural
pressurepe− ps to be equal to a value obtained from the full numerical computation for the sameRe and
T (i.e.,β), and by testing the difference between zero wall shear and zero pressure gradient as a separation
criterion. (In most of the cases shown in Figure 15 below,ps was taken to be equal to the value ofp atx = L
in the full computation; in just one case it was taken equal to the minimum computed value ofp.) An
alternative model that we have also applied (for steady flow) is to continue to use the Karman–Pohlhausen
approximation all the way tox = L.

Predictions ofh(x) andp(x) according to the three new models are shown for one set of parameters
(β = 60, Re = 300) in Figure 15 and compared with the full numerical solution. The new models agree
pretty well with each other, but poorly with the corresponding two-dimensional calculation. The full solution
shows a much stronger collapse of the downstream part of the membrane and a bigger bulge upstream, where
the internal pressure is much greater. The full solution clearly involves much greater energy loss than the
new approximations, and this must be due to the fact that the quartic velocity profile (18) cannot adequately
represent the developing boundary layers and the separation process. That this is indeed so can be seen
from the velocity profiles plotted in Figure 16, where it also becomes apparent (a) that the profile (18) is
necessarily symmetric, while the real one is highly asymmetric, especially after flow separation, and (b) that
the upstream bulge involves a distortion of the profile near the membrane which must be associated with
some distortion further upstream (x < 0), precluded by the Karman–Pohlhausen method.

Figure 15. Results of the new models for steady flow, compared with the full computations (Re = 300,β = 60). (a) Membrane
displacementh(x); (b) pressurep(x). Bold solid curves: full two-dimensional computations. Fine solid curves: new model used for allx;
dashed curves: new model with a circular arc downstream of the separation point, defined by vanishing of wall shear rate; dash-dot
curves: new model, with a circular arc downstream of the point of minimum pressure, and with transmural pressure taken to be the same
as in the full model at either the downstream end or the minimum pressure point.
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Figure 16.Velocity profiles at various values ofx in steady flow, (a) and (b) according to the new model (using the Karman-Pohlhausen
profiles all the way tox = L); (c) and (d) from the full computations. ——x/L = 0.1 (a) and (c), = 0.6 (b) and (d);· · ·· · ·, x/L = 0.2
(a) and (c), = 0.7 (b) and (d); – – –,x/L = 0.3 (a) and (c), = 0.8 (b) and (d); –·– ·–,x/L = 0.4 (a) and (c), = 0.9 (b) and (d); –· · · – · · ·,
x/L = 0.5 (a) and (c), = 1.0 (b) and (d)

We are currently working to improve the new one-dimensional model, using more modern boundary layer
methods, both for steady flow and, more importantly, for unsteady flow. In the latter endeavour, a sensible
way to match time-dependent flow separation to vorticity wave generation will be our primary goal.
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