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Abstract

Soft materials exhibit significant nonlinear geometric deformations and stress-
strain relationships under external forces. This paper explores weakly non-
linear elasticity theories, including Landau’s and Murnaghan’s formulations,
advancing understanding beyond linear elasticity. We establish connections
between these methods and extend strain-energy functions to the third and
fourth orders in power of ε, where ε =

√
H ·H and 0 < ε ≤ 1, and H is the

perturbation to the deformation gradient tensor F = I+H. Furthermore, we
address simplified strain-energy functions applicable to incompressible ma-
terials. Through this work, we contribute to a comprehensive understanding
of nonlinear elasticity and its relationship to weakly nonlinear elasticity, fa-
cilitating the study of moderate deformations in soft material behavior and
its practical applications.

Keywords: Weakly nonlinear elasticity; hyperelasticity; incompressible
materials; Landau; Murnaghan; invariants

1. Introduction

Soft materials, such as biological tissues and gels, often undergo signif-
icant geometric deformations when subjected to external forces (Li et al.,
2012). Unlike hard materials, which typically only experience small defor-
mations, the stress-strain relationship in soft materials is best described using
nonlinear elasticity theory due to the large deformations involved (Kuhl and
Steinmann, 2003; Alijani and Amabili, 2014; Wang et al., 2023; Destrade
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et al., 2023). Linear elasticity theory is often insufficient to accurately repre-
sent the stress-strain relationship in these materials, necessitating the use of
nonlinear finite-deformation theory and precise constitutive modeling (Og-
den, 1997).

For homogeneous isotropic hyperelastic materials, finite-deformation
analysis commonly relies on the strain-energy function represented by the
three principal invariants of the strain tensor (Ogden, 1997). The stress-
strain relationship can be obtained by solving the partial derivatives of the
strain-energy function. Under the assumption of incompressibility, the strain-
energy can be further simplified as a function of two principal invariants.
Analytical solutions for large deformation problems of incompressible mate-
rials in simple structures have been found based on finite deformation theory
(Rivlin, 1953). However, obtaining analytical solutions that account for large
deformations becomes difficult for complex problems like nonlinear contact
(Duan et al., 2012) and post-buckling analysis (Cai and Fu, 1999). Linear
elastic approximations also fail to meet the precision requirements. Instead,
weakly nonlinear theory provides an effective approach in such cases (Sacco-
mandi and Vergori, 2021).

In weakly nonlinear elasticity theory, particularly the formulation pro-
posed by Landau et al. (1986) and Murnaghan (1937), represents a significant
advance in nonlinear elasticity theory. The use of the strain-energy function
in polynomial form allows for the precise determination of elastic moduli
through curve fitting of experimental data using standard linear regression
techniques (Saccomandi and Vergori, 2021; Ogden et al., 2004).

Landau’s approach (Landau et al., 1986), based on the Landau invariants
of the Cauchy-Green strain tensor, with terms up to the third and/or higher
orders of the strain-energy functions, includes both material and geometric
nonlinearity (Saccomandi and Vergori, 2021). It finds applications in mate-
rial science, geophysics, acoustics, and other fields, accurately predicting the
mechanical response of materials under realistic loading conditions (Destrade
et al., 2002, 2010; Krishna Chillara and Lissenden, 2012).

Murnaghan’s framework Murnaghan (1937), which expresses the strain-
energy function as a triply-infinite power series in the principal invariants
of the Cauchy-Green strain tensor, is also widely used. This approach has
shown the ability to solve simple problems involving compressible materials
and specific cross-sectional shapes of prisms under incompressible conditions
Rivlin (1953). It approximates the strain-energy function to any desired or-
der in the power-series expansion, utilizing the symmetric functions of prin-
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cipal invariants. Additionally, under the assumption of small deformations,
the higher-order Murnaghan model extends the classical linear elastic theory
into the weakly nonlinear region, providing a robust method. By consid-
ering the superposition of displacements of higher orders and substituting
them into the motion equations and boundary conditions according to the
corresponding orders, the Murnaghan model (Rivlin, 1953) demonstrates the
linearization of the nonlinear problem by neglecting higher-order terms and
simplifying solutions to quasi-nonlinear problems (Sabin and Kaloni, 1983;
Du et al., 2023).

This article aims to organize the definitions of different strains, invariants,
and strain-energy functions in these two different weakly nonlinear elastic
theories and the various forms of strain-energy functions and material param-
eters in non-linear elastic theory to establish their relationships. We expand
the strain-energy functions in the weakly nonlinear theory up to the third
and fourth orders, corresponding to the second-order and third-order elastic-
ity theories. Additionally, we consider the simplified strain-energy functions
and stress-strain relationships of materials under incompressible conditions,
as many soft materials can be assumed to be incompressible.

2. Connections among different strain invaraints

In the context of finite deformation, let us consider an elastic body un-
dergoing a finite displacement field u from the reference configuration to
the current configuration. The deformation gradient tensor F is defined
by F = I + H, where H is the displacement gradient tensor, defined as
H = Grad,u. For the purpose of weakly nonlinear theory, we shall assume
that H ia the perturbation to the deformation gradient tensor is small. i.e.
ε =

√
H ·H and 0 < ε ≤ 1. Henceforth, the left and right Cauchy-Green

strain tensors are

b = FFT = I+H+HT +HHT = I+ e+α,

C = FTF = I+H+HT +HTH = I+ e+ γ,
(1)

where we separate e = H+HT, α = HHT, and γ = HTH, so that e is the
first order term i.e. e = O(ε) and α = γ = O(ε2) are of second order terms.
The Green-Lagrange strain tensor E is then given by

E =
1

2
(C− I) =

1

2
(e+ γ) . (2)
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In linear elasticity, providing that the displacement gradient tensor H is
small, and ignoring the second-order terms of H, we obtain the infinitesimal
strain tensor

E∗ =
1

2

(
H+HT

)
=

1

2
e. (3)

The strain-energy function of an ideal isotropic elastic material, capable
of undergoing finite deformation, can generally be expressed in terms of three
independent scalar invariants of the strain tensor. For a general second-order
tensor M, the principal invariants are defined by the equation

M3 − IMM2 + IIMM− IIIMI = 0, (4)

where the invariants of the tensor M are

IM = tr(M), IIM =
1

2

(
tr(M)2 − tr

(
M2

))
, IIIM = detM. (5)

On the other hand, the scalar invariants of the tensor M can be defined in
Landau’s form by

Ī1 = tr(M), Ī2 = tr
(
M2

)
, Ī3 = tr

(
M3

)
, (6)

where Ī1, Ī2, and Ī3 are respectively the first-, second- and third-order terms
of M.

Some commonly used invariants and the relationships between them are

IC = tr(C), IIC =
1

2

(
tr(C)2 − tr

(
C2

))
, IIIC = detC,

Ī1 = tr(E), Ī2 = tr
(
E2

)
, Ī3 = tr

(
E3

)
,

J1 = tr(2E), J2 =
1

2

(
tr(2E)2 − tr

(
4E2

))
, J3 = det(2E),

J̃1 = tr(E), J̃2 =
1

2

(
tr(E)2 − tr

(
E2

))
, J̃3 = detE.

(7)

Among them, IC , IIC , and IIIC are principal invariants of the right Cauchy-
Green strain tensor C, which are often used for constructing the strain-
energy function for hyperelastic material in fully nonlinear elasticity. When
the material is incompressible (IIIC = 1), the strain-energy function can
be simplified to depend solely on IC and IIC . Additionally, the Landau
invariants Ī1, Ī2, and Ī3 represent the first, second and third-order terms of
the Green-Lagrange strain tensor E. Similarly, the principal invariants of the
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Green-Lagrange strain tensor E, namely J̃1, J̃2, and J̃3, also represent its first,
second and third-order terms. These are known as Murnaghan invariants.
However, it is more convenient to use another set of Murnaghan invariants,
namely J1, J2, and J3, which are the principal invariants of 2E to simplify
the derivation of the stress-strain relationships.

Given the often utilization of both fully nonlinear and weakly nonlinear
elasticity theories in the derivation of nonlinear deformation problems, it
becomes imperative to comprehensively outline the interconnections between
the invariants and the strain-energy functions they engender.

2.1. Connections between IC , IIC, IIIC and Ī1, Ī2, Ī3

In this subsection, we shall demonstrate the connections between the
principal invariants, IC , IIC , and IIIC , of the right Cauchy-Green strain
tensor C and the Landau invariants, Ī1, Ī2, Ī3, of the Green-Lagrange strain
tensor E. First, recalling the Eqs. (2) and (7), we have

trC = tr(I+ 2E) = 2Ī1 + 3,

tr
(
C2

)
= tr

(
4E2 + 4E+ I

)
= 4Ī2 + 4Ī1 + 3,

tr
(
C3

)
= tr

(
8E3 + 12E2 + 6E+ I

)
= 8Ī3 + 12Ī2 + 6Ī1 + 3.

(8)

Then, the first and second principal invariants of the right Cauchy-Green
strain tensor C can be expressed as

IC = trC = 2Ī1 + 3,

IIC =
1

2

(
tr(C)2 − tr

(
C2

))
= 3 + 4Ī1 + 2Ī21 − 2Ī2.

(9)

Next, by tracing the Eq. (4), we obtain

tr
(
C3

)
− ICtr

(
C2

)
+ IICtrC− 3IIIC = 0. (10)

Using this equation, the third principal invariant of the right Cauchy-Green
strain tensor C can be expressed as

IIIC = detC =
1

3

(
tr
(
C3

)
− ICtr

(
C2

)
+ IICtrC

)
= 1 + 2Ī1 + 2Ī21 − 2Ī2 +

4

3
Ī31 − 4Ī1Ī2 +

8

3
Ī3.

(11)
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Inversely, from to Eqs. (9) and (11), we can express the Landau invariants
Ī1, Ī2, and Ī3 in terms of the principal invariants IC , IIC , and IIIC as

Ī1 =
1

2
(−3 + IC), Ī2 =

1

4

(
3− 2IC + I2C − 2IIC

)
,

Ī3 =
1

8

(
24− 24IC + 12I2C − 2I3C − 12IIC + 3ICIIC + 3IIIC

)
.

(12)

2.2. Connections between IC , IIC, IIIC, J1, J2, J3, and J̃1, J̃2, J̃3
As the two sets of definitions of the Murnaghan invariants J1, J2, J3,

and J̃1, J̃2, J̃3 in Eq. (7) are commonly used, we shall first show connec-
tions between them and then demonstrate relationships with to the principal
invariants of the right Cauchy-Green strain tensor C.

From Eq. (7), we obtain

J1 = tr(2E) = 2trE = 2J̃1,

J2 =
1

2

(
tr(2E)2 − tr

(
4E2

))
=

1

2

(
4J̃2

1 − 4tr
(
E2

))
= 4J̃2,

J3 = det(2E) = 8detE = 8J̃3.

(13)

Furthermore, utilizing Eqs. (2) and (7), we can deduce the following rela-
tionships between the Murnaghan invariants IC , IIC , IIIC and J1, J2, J3:

IC = tr(I+ 2E) = 3 + tr(2E) = 3 + J1,

IIC =
1

2

(
(J1 + 3)2 − tr

(
4E2 + 4E+ I

))
= 3 + 2J1 + J2,

IIIC = det(I+ 2E) = 1 + J1 + J2 + J3.

(14)

Inversely, we have

J1 = IC − 3, J2 = 3− 2IC + IIC , J3 = IC − IIC + IIIC − 1. (15)

Moreover, considering the connections between Ji and J̃i(i = 1, 2, 3) in Eq.
(13), we have

IC = 3 + 2J̃1, IIC = 3 + 4J̃1 + 4J̃2, IIIC = 1 + 2J̃1 + 4J̃2 + 8J̃3, (16)

and

J̃1 =
1

2
(IC − 3), J̃2 =

1

4
(3− 2IC + IIC), J̃3 =

1

8
(IC − IIC + IIIC − 1).

(17)
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2.3. Connections among Ī1, Ī2, Ī3, J1, J2, J3, and J̃1, J̃2, J̃3

This subsection explores the connections between the Landau invariants
Ī1, Ī2, Ī3 and the Murnaghan invariants J1, J2, J3. Utilizing Eqs. (9), (11),
and (14), the following relationships can be established:

2Ī1 + 3 = 3 + J1,

3 + 4Ī1 + 2Ī21 − 2Ī2 = 3 + 2J1 + J2,

1 + 2Ī1 + 2Ī21 − 2Ī2 +
4

3
Ī31 − 4Ī1Ī2 +

8

3
Ī3 = 1 + J1 + J2 + J3.

(18)

Solving these equations yields

Ī1 =
1

2
J1, Ī2 =

1

4

(
J2
1 − 2J2

)
, Ī3 =

1

8

(
J3
1 − 3J1J2 + 3J3

)
, (19)

and

J1 = 2Ī1, J2 = 2
(
Ī21 − Ī2

)
, J3 =

4

3

(
Ī31 − 3Ī1Ī2 + 2Ī3

)
. (20)

Analogously, according to the Eq. (13), we can obtain the connections
between the Landau invariants Īi(i = 1, 2, 3) and Murnaghan invariants
J̃i(i = 1, 2, 3) are

Ī1 = J̃1, Ī2 = J̃2
1 − 2J̃2, Ī3 = J̃3

1 − 3J̃1J̃2 + 3J̃3. (21)

and

J̃1 = Ī1, J̃2 =
1

2

(
Ī21 − Ī2

)
, J̃3 =

1

6

(
Ī31 + 3Ī1Ī2 + 2Ī3

)
. (22)

Finally, the summary of transformations for the principal invariants, IC ,
IIC , and IIIC , of the right Cauchy-Green strain tensor C, the Landau in-
variants Ī1, Ī2, Ī3 of the Green-Lagrange strain tensor E, and the Murnaghan
invariants J1, J2, J3 of the strain tensor 2E can be found in Table 1.

Table 1: Transformations of some commonly used scalar invariants of strain tensors.
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The principal invariants of C Landau invariants of E Murnaghan invariants of 2E

The principal invariants of C
IC = tr(C)
IIC = 1

2

(
tr(C)2 − tr

(
C2

))
IIIC = detC

–

IC = 3 + 2Ī1
IIC = 3 + 4Ī1 + 2Ī21 − 2Ī2
IIIC =1 + 2Ī1 + 2Ī21 − 2Ī2

+
4

3
Ī31 − 4Ī2Ī1 +

8

3
Ī3

IC = 3 + J1
IIC = 3 + 2J1 + J2
IIIC = 1 + J1 + J2 + J3

Landau invariants of E
Ī1 = tr(E)
Ī2 = tr

(
E2

)
Ī3 = tr

(
E3

)
Ī1 = 1

2
(−3 + IC)

Ī2 = 1
4

(
3− 2IC + I2C − 2IIC

)
Ī3 =

1

8
(24− 24IC + 12I2C − 2I3C

−12IIC + 3ICIIC + 3IIIC)

–

Ī1 = 1
2
J1

Ī2 = 1
4

(
J2
1 − 2J2

)
Ī3 = 1

8

(
J3
1 − 3J1J2 + 3J3

)

Murnaghan invariants of 2E
J1 = tr(2E)
J2 = 1

2

(
tr(2E)2 − tr

(
4E2

))
J3 = det(2E)

J1 = IC − 3
J2 = 3− 2IC + IIC
J3 = IC − IIC + IIIC − 1

J1 = 2Ī1
J2 = 2

(
Ī21 − Ī2

)
J3 = 4

3

(
Ī31 − 3Ī1Ī2 + 2Ī3

) –

3. Weakly nonlinear elasticity for isotropic compressible materials

In fully nonlinear elasticity, the strain-energy function of the isotropic
compressible material W is commonly expressed in terms of the three prin-
cipal invariants (IC , IIC , and IIIC) of the right Cauchy-Green strain tensor
C. The Cauchy stress tensor t can be represented as

t =
2

J

(
b
∂W

∂IC
− IIICb

−1 ∂W

∂IIC
+

(
IIIC

∂W

∂IIIC
+ IIC

∂W

∂IIC

)
I

)
, (23)

where b is the left Cauchy-Green tensor. J = detF and J = 1 for incom-
pressible materials. Here IC − 3, IIC − 3, and IIIC − 1 are all of O(ε).
For weakly nonlinear elasticity, instead of using the principal invariants of C
to construct the strain-energy function and stress tensor, it is more conve-
nient to employ the Landau and Murnaghan invariants for constructing the
strain-energy function up to a certain order of expansion.

3.1. Second-order elasticity

3.1.1. strain-energy functions

In second-order elasticity, we require the terms of O(ε2) in the stress and
strain tensors. Consequently, the strain-energy function needs to include the
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third-order terms of O(ε3). In terms of Murnaghan invariants, the strain-
energy function to third-order terms is

WM = a1J2 + a2J
2
1 + a3J1J2 + a4J

3
1 + a5J3 +O(ε4) (24)

where a1, ..., a5 are O(ε) material constants. W2M = a1J2 + a2J
2
1 = O(ε2)

and W3M = a3J1J2 + a4J
3
1 + a5J3 = O(ε3) are the second and the third

order terms, respectively. Alternatively, third-order energy function can be
expressed in terms of Landau invariants as:

WL =
λ

2
Ī21 + µĪ2 +

Ā

3
Ī3 + B̄Ī1Ī2 +

C̄

3
Ī31 +O(ε4), (25)

where µ and λ are the linear Lamé coefficients, and Ā, B̄ and C̄ are O(ε)
elastic material constants. W2L = λ

2
Ī21 + µĪ2 is the second order term and

W3L = Ā
3
Ī3 + B̄Ī1Ī2 +

C̄
3
Ī31 is the third order term.

Referring to the connections between Murnaghan invariants and Landau
invariants in Eq. (20), the third-order strain-energy function in Murnaghan
expansion can be rewritten as

WM = (2a1+4a2)Ī
2
1−2a1Ī2+

8a5
3

Ī3−4(a3+a5)Ī1Ī2+

(
4a3 + 8a4 +

4a5
3

)
Ī31+O(ε4).

(26)
Thus, we can obtain the following relationships among the material constants

λ = 4a1 + 8a2, µ = −2a1,

Ā = 8a5, B̄ = −4(a3 + a5), C̄ = (12a3 + 24a4 + 4a5).
(27)

Similarly, referring to the connections between Landau invariants and Mur-
naghan invariants in Eq. (19), we can rewrite the third-order strain-energy
function in Landau expansion as:

WL = −µ

2
J2+

(
λ

8
+

µ

4

)
J2
1−

(
Ā

8
+

B̄

4

)
J1J2+

(
Ā

24
+

B̄

8
+

C̄

24

)
J3
1+

Ā

8
J3+O(ε4).

(28)
This leads to

a1 = −µ

2
, a2 =

λ

8
+

µ

4
,

a3 = −
(
Ā

8
+

B̄

4

)
, a4 =

Ā

24
+

B̄

8
+

C̄

24
, a5 =

Ā

8
.

(29)
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3.1.2. Stress-strain relationships

Second-order elasticity requires the stress and strain tensors to be ex-
panded to O(ε2). According to Eq. (23), the Cauchy stress tensor involves
the three principal invariants of the right Cauchy-Green strain tensor (IC ,
IIC , and IIIC), as well as the partial derivatives of the strain-energy func-
tion W with respect to them, the left Cauchy-Green strain tensor b, and its
inverse tensor b−1. For isotropic elastic solids, the principal invariants of the
left Cauchy-Green strain tensor b equal to those of the right Cauchy-Green
strain tensor C, i.e., Ib = IC , IIb = IIC , and IIIb = IIIC . From (1) and
defining

e = tre, α = trα, K = (det e)e−1, (30)

the first principal invariant Ib can be expressed as

Ib = trb = 3 + e+ α, (31)

and

b2 = (I+ e+α)2 = I+ 2e+ 2α+ e2 +O
(
ε3
)
. (32)

By tracing this equation and using the Eq. (30), we obtain

tr
(
b2

)
= 3 + 2e+ α + e2 − 2K +O

(
ε3
)
, (33)

where K = trK = 1
2
((tre)2 − tr (e2)). Thus, the second principal invariant

IIb is given as

IIb =
1

2

(
(trb)2 − tr

(
b2

))
= 3 + 2e+ 2α +K +O(ε3), (34)

and the third principal invariant IIIb is

IIIb = detb = det(I+ e+α) = 1 + j1 + j2 + j3, (35)

where j1 = tr(e+α), j2 = 1
2
(j21 − tr ((e+α)2)) , j3 = det(e+α). Refer-

ring to Eq. (30) and expanding to second-order terms, we have

j1 = e+ α +O
(
ε3
)
, j2 = K +O

(
ε3
)
, j3 = 0 +O

(
ε3
)
. (36)

Thus, the third principal invariant IIIb can be expanded as

IIIb = 1 + e+ α +K +O
(
ε3
)

(37)
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In addition, using the Cayley-Hamilton theorem and Eqs. (31), (32), and
(34), we have

IIICb
−1 = IIIbb

−1 = b2 − Ibb+ IIbI

= (e− e− 1)e−α+ (1 + e+ α +K)I+O
(
ε3
)
.

(38)

Analogously, from Eq.(30), we have

K = (dete)e−1 = e2 − Iee+ IIeI, (39)

where Ie = tre = e, IIe =
1
2
((tre)2 − tr (e2)) = K. This equation gives

e2 = K+ ee−KI. (40)

Hence, Eq. (38) can be finally rewritten as

IIICb
−1 = K− e−α+ (1 + e+ α)I+O

(
ε3
)
. (41)

Next, following the connections between the Murnaghan invariants and
the principal invariants in Eq. (17), we have

J1 = IC − 3 = e+ α,

J2 = 3− 2IC + IIC = K +O
(
ε3
)
,

J3 = IC − IIC + IIIC − 1 = O
(
ε3
)
.

(42)

In addition, using the chain rule, we can replace the derivatives of the strain-
energy function W with respect to IC , IIC , and IIIC by

∂WM

∂IC
=

∂WM

∂J1
− 2

∂WM

∂J2
+

∂WM

∂J3
,

∂WM

∂IIC
=

∂WM

∂J2
− ∂WM

∂J3
,

∂WM

∂IIIC
=

∂WM

∂J3
.

(43)

With respect to the third-order Murnaghan strain-energy function in Eq.
(24), we have

∂WM

∂IC
= (a5 − 2a1) + 2(a2 − a3)J1 + a3J2 + 3a4J

2
1 +O

(
ε3
)
,

∂WM

∂IIC
= (a1 − a5) + a3J1 +O

(
ε2
)
,

∂WM

∂IIIC
= a5 +O (ε) .

(44)
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Moreover, recalling that J= det(F) = III
1/2
C and using (37), we have

2

J
=

2

det(F)
= 2− e+

3

4
e2 −K − α +O

(
ε3
)
. (45)

Finally, substituting Eqs. (31), (34), (37), (41), (44), and (45) into (23) and
ignoring the higher-order terms, we can derive the second-order expansion of
the Cauchy stress tensor

t = [−2a1e+ (2a1 + 4a2)eI] + [(a1 + 4a2 − 2a3)ee− (2a1 − 2a5)K− 2a1α

+
(
(2a1 + 2a3)K + (2a1 + 4a2)α− (a1 + 2a2 − 2a3 − 6a4)e

2
)
I
]
+O

(
ε3
)
.

(46)
From this, we extract the first-order linear elastic term

t1 =− 2a1e+ (2a1 + 4a2)eI, (47)

and the second-order term

t2 =(a1 + 4a2 − 2a3)ee− (2a1 − 2a5)K− 2a1α

+
(
(2a1 + 2a3)K + (2a1 + 4a2)α− (a1 + 2a2 − 2a3 − 6a4)e

2
)
I.

(48)

3.2. Third-order elasticity

3.2.1. strain-energy functions

The third-order elasticity requires expanding the stress and strain tensors
up to third-order smallness O (ε3), as well as the strain-energy function up
to fourth-order smallness O (ε4). The fourth-order energy function can be
expressed using the Murnaghan invariants by

WM = W2M +W3M +W4M +O
(
ε5
)
, (49)

where W4M = a6J1J3 + a7J
2
1J2 + a8J

2
2 + a9J

4
1 and a6, a7, a8, and a9 are

O (ε) material constants. Additionally, the fourth-order energy function can
be expressed in terms of the Landau invariants as

WL = W2L +W3L +W4L +O
(
ε5
)
, (50)

where W4L = ĒĪ1Ī3 + F̄ Ī21 Ī2 + ḠĪ22 + H̄Ī41 µ and Ē, F̄ , Ḡ and H̄ are O (ε)
material constants. Referring to the connections between the Murnaghan
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invariants and Landau invariants in Eq. (20), we can rewrite the fourth-
order strain-energy term in the Murnaghan expansion as

W4M =
16a6
3

Ī1Ī3 − 8(a6 + a7 + a8)Ī
2
1 Ī2 + 4a8Ī

2
2 +

(
8a6
3

+ 8a7 + 4a8 + 16a9

)
Ī41 .

(51)
Thus, the relationships between the material constants are

Ē =
16a6
3

, F̄ = −8(a6 + a7 + a8), Ḡ = 4a8, H̄ =
8a6
3

+ 8a7 + 4a8 + 16a9.

(52)
Similarly, referring to the connections between the Landau invariants and
Murnaghan invariants in Eq. (19), we can rewrite the fourth-order strain-
energy term in the Landau expansion as follows:

W4L =
3Ē

16
J1J3 −

1

16
(3Ē + 2F̄ + 4Ḡ)J2

1J2 +
Ḡ

4
J2
2 +

1

16
(Ē + F̄ + Ḡ+ H̄)J4

1 ,

(53)
which gives the relationship among the material constants

a6 =
3Ē

16
, a7 = − 1

16
(3Ē + 2F̄ + 4Ḡ), a8 =

Ḡ

4
, a9 =

1

16
(Ē + F̄ + Ḡ+ H̄).

(54)

3.2.2. Stress-strain relationships

Here, our aim is to expand all terms in Equation (23) up to the third-
order terms and obtain the third-order expansion of the Cauchy stress tensor,
represented by t = t1 + t2 + t3 + O (ε4), where t3 denotes the third-order
term. By expanding the square of the left Cauchy-Green strain tensor b, we
have

b2 = I+ 2e+ 2α+ e2 + 2β +O
(
ε4
)
, (55)

and its trace

tr
(
b2

)
= 3 + 2e+ 2α + e2 − 2K + 2β +O

(
ε4
)
, (56)

where β = eα and β = tr(eα). Therefore, the second principal invariant IIb
can be obtained by

IIb =
1

2

(
(trb)2 − tr

(
b2

))
= 3 + 2e+ 2α +K + αe− β +O

(
ε4
)
. (57)
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Next, referring to Eqs. (30) and (35) and expand to the third-order terms,
we find

j1 = e+ α, j2 = K + eα− β +O
(
ε4
)
, j3 = L+O

(
ε4
)
, (58)

where L = dete. Therefore, we can yield

IIIb = 1 + e+ α +K + eα− β + L+O
(
ε4
)
. (59)

Moreover, according to the Cayley-Hamilton theorem, we have

IIICb
−1 =K− e−α+ (1 + e+ α + αe− β)I

+ 2β − eα− αe+O
(
ε4
)
.

(60)

By following the connections between the Murnaghan invariants and prin-
cipal invariants in Eq. (17) and expanding to third-order terms, we find

J1 = IC − 3 = e+ α

J2 = 3− 2IC + IIC = K + αe− β +O
(
ε4
)

J3 = IC − IIC + IIIC − 1 = L+O
(
ε4
) (61)

Additionally, using the chain rule, we can replace the derivatives of the strain-
energy function WM with respect to IC , IIC , and IIIC by

∂WM

∂IC
=

∂WM

∂J1
− 2

∂WM

∂J2
+

∂WM

∂J3
,

∂WM

∂IIC
=

∂WM

∂J2
− ∂WM

∂J3
,

∂WM

∂IIIC
=

∂WM

∂J3
.

(62)

In the case of the fourth-order Murnaghan strain-energy function in Eq. (49),
we have

∂WM

∂IC
=(a5 − 2a1) + (2a2 − 2a3 + a6)J1 + (a3 − 4a8)J2

+ (3a4 − 2a7)J
2
1 + 4a9J

3
1 + 2a7J1J2 + a6J3 +O

(
ε4
)
,

∂WM

∂IIC
=(a1 − a5) + (a3 − a6)J1 + a7J

2
1 + 2a8J2 +O

(
ε3
)
,

∂WM

∂IIIC
=a5 + a6J1 +O

(
ε2
)
.

(63)
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Moreover, recalling that J= det(F) = III
1/2
C and using the Eq. (59), we

have

2

J
= 2− e+

3

4
e2 −K − α− 5

8
e3 +

3

2
eK +

1

2
eα + β − L+O

(
ε4
)
. (64)

Finally, substituting the Eqs. (31), (57), (59), (60), (63), and (64) into (23)
and ignoring the higher-order terms, we can obtain the Cauchy stress up to
the third-order terms to be

t = t1 + t2 + t3 +O
(
ε4
)

(65)

in which the third-order term is

t3 =

[(
−3

4
a1 − 2a2 + a3 + 6a4 − 2a7

)
e2 + (a1 + 2a3 − 4a8)K

+ (3a1 + 4a2 − 2a3 − 2a5)α] e+ (a1 − 2a3 − a5 + 2a6)eK

+ (3a1 + 4a2 − 2a3 − 2a5)eα+ (4a5 − 4a1)β

+

((
3

4
a1 +

3

2
a2 − a3 − 3a4 + 2a7 + 8a9

)
e3 + (−2a1 − 2a2 + a3 + 4a7 + 4a8)eK

+(−2a1 − 4a2 + 6a3 + 12a4 + 2a5)eα + (2a5 + 2a6)L− (2a3 + 2a5)β) I.
(66)

4. Weekly nonlinear elasticity for isotropic incompressible materi-
als

Most soft biological materials are assumed to be incompressible, so that
IIIC = 1, and then the strain-energy function W is a of just IC and IIC and
the Cauchy stress tensor is given by

t = −pI+ 2
∂W

∂IC
b− 2

∂W

∂IIC
b−1, (67)

where p is the Lagrange multiplier that needs to be determined by a boundary
condition. Given IIIC = 1, then

Ī1 = −Ī21 + Ī2 + 2Ī1Ī2 −
2

3
Ī31 −

4

3
Ī3, and J1 = −J2 − J3. (68)

In this section, we present the weakly nonlinear expansion of energy functions
for commonly used incompressible isotropic hyperelastic solids in the Landau
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and Murnaghan forms. These include the neo-Hookean model WNH, the
two-parameter Mooney-Rivlin model WMR2, and the five-parameter Mooney-
Rivlin model WMR5, which are given by

WNH =C10(IC − 3),

WMR2 =C10(IC − 3) + C01(IIC − 3),

WMR5 =C10(IC − 3) + C01(IIC − 3) + C20(IC − 3)2

+ C11(IC − 3)(IIC − 3) + C02(IIC − 3)2.

(69)

4.1. Second-order elasticity

4.1.1. strain-energy functions

For the incompressible materials, the Eq. (68) indicates that Ī1 =
1
2
(e+α)

and J1 = e+α are second-order O (ε2) quantities. In addition, recalling that
the strain-energy function should be expanded up to the third-order smallness
for the second-order elasticity theory, the incompressibility condition in terms
of the Landau invariants can be written as

Ī1 = Ī2 −
4

3
Ī3 +O

(
ε4
)
. (70)

Thus, we have

IC − 3 = 2Ī1 = 2Ī2 −
8

3
Ī3 +O

(
ε4
)
,

IIC − 3 = 4Ī1 + 2Ī21 − 2Ī2 = 2Ī2 −
16

3
Ī3 +O

(
ε4
)
.

(71)

Substituting this equation to Eq. (69), we can obtain the expansion form of
the energy functions as follow:

WNH =2C10Ī2 −
8

3
C10Ī3 +O

(
ε4
)
,

WMR2 =2(C10 + C01)Ī2 −
8

3
(C10 + 2C01)Ī3 +O

(
ε4
)
,

WMR5 =2(C10 + C01)Ī2 −
8

3
(C10 + 2C01)Ī3 +O

(
ε4
)
.

(72)

Following the third-order incompressible isotropic elasticity analysis by
Destrade and Ogden (2010), the weakly nonlinear expansion of the strain-
energy functions in terms of Landau invariants up to third-order is

WL = µĪ2 +
Ā

3
Ī3 +O

(
ε4
)
, (73)
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From this, we can obtain the following connections between the material
constants of the incompressible neo-Hookean, two-parameter Mooney-Rivlin,
and five-parameter Mooney-Rivlin solids

WNH : µ = 2C10, Ā = −8C10,

WMR2 : µ = 2(C10 + C01), Ā = −8(C10 + 2C01),

WMR5 : µ = 2(C10 + C01), Ā = −8(C10 + 2C01).

(74)

Next, recalling the connections between IC , IIC , IIIC and J1, J2, J3 in
Eq. (14), the incompressibility condition in Eq. (68) can be expressed in
terms of the Murnaghan invariants as follow:

IC − 3 = J1 = −J2 − J3,

IIC − 3 = 2J1 + J2 = −J2 − 2J3.
(75)

Substituting (75) into (69) and neglecting the terms of O (ε4), we can rewrite
the stain energy functions as

WNH =− C10J2 − C10J3,

WMR2 =− (C10 + C01)J2 − (C10 + 2C01)J3,

WMR5 =− (C10 + C01)J2 − (C10 + 2C01)J3 +O
(
ε4
)
.

(76)

According to Eqs. (73) and (29), the strain-energy functions in terms of
Murnaghan invariants becomes

WM = a1J2 + a5J3 +O
(
ε4
)
. (77)

Thus, for the incompressible neo-Hookean, two-parameter Mooney-Rivlin,
and five-parameter Mooney-Rivlin models, we have the following connections
between the material constants:

WNH : a1 = −C10, a5 = −C10,

WMR2 : a1 = −(C10 + C01), a5 = −(C10 + 2C01),

WMR5 : a1 = −(C10 + C01), a5 = −(C10 + 2C01).

(78)

4.1.2. Stress-strain relationships

To simplify the calculation, we use the third-order Murnaghan form
strain-energy function to derive the second-order Cauchy stress tensor. First,
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using the chain rule, we can rewrite the derivatives of the strain-energy func-
tion W with respect to IC , IIC , and IIIC as

∂WM

∂IC
= −2

∂WM

∂J2
+

∂WM

∂J3
= −2a1 + a5,

∂WM

∂IIC
=

∂WM

∂J2
− ∂WM

∂J3
= a1 − a5.

(79)

According to the Eq. (37), the incompressibility condition IIIC = 1 gives

e = −α−K +O
(
ε3
)
, (80)

which indicates that e is the second-order quantity. Hence, Eq. (41) can be
reduced to

b−1 = K− e−α+ (1−K)I +O
(
ε3
)
. (81)

Therefore, substituting the Eqs. (79), (81) into (67) and ignoring the higher-
order terms, we have the second-order Cauchy stress tensor

t = −2a1e−(2a1−2a5)K−2a1α+(−6a1+4a5+(2a1−2a5)K−p)I+O
(
ε3
)
.

(82)
Specifically, according to the Eq. (78), for incompressible neo-Hookean solid,
the Cauchy stress tensor is given by

t = 2C10e+ 2C10α+ (2C10 − p)I+O
(
ε3
)
. (83)

For incompressible two-parameter Mooney-Rivlin solid, the Cauchy stress
tensor can be rewritten as

t = 2(C10 + C01)e+2(C10 + C01)α−2C01K+(2C10−2C01(1−K)−p)I+O
(
ε3
)
,

(84)
and for incompressible five-parameter Mooney-Rivlin solid, the Cauchy stress
tensor can be expressed by

t = 2(C10 + C01)e+2(C10 + C01)α−2C01K+(2C10−2C01(1−K)−p)I+O
(
ε3
)
.

(85)

4.2. Third-order elasticity

4.2.1. strain-energy functions

For the third-order elasticity, the strain-energy function is expanded to
fourth-order. The incompressibility condition, in terms of the Landau invari-
ants, is

Ī1 = Ī2 −
4

3
Ī3 + Ī22 +O

(
ε4
)
. (86)
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Therefore,

IC − 3 = 2Ī1 = 2Ī2 −
8

3
Ī3 + 2Ī22 +O

(
ε4
)

IIC − 3 = 4Ī1 + 2Ī21 − 2Ī2 = 2Ī2 −
16

3
Ī3 + 6Ī22 +O

(
ε4
)
.

(87)

Hence, we can rewrite Eq. (69) as

WNH =2C10Ī2 −
8

3
C10Ī3 + 2C10Ī

2
2 +O

(
ε4
)

WMR2 =2(C10 + C01)Ī2 −
8

3
(C10 + 2C01)Ī3 + 2(3C01 + C10)Ī

2
2 +O

(
ε4
)

WMR5 =2(C10 + C01)Ī2 −
8

3
(C10 + 2C01)Ī3

+ 2(3C01 + C10 + 2C20 + 2C11 + 2C02)Ī
2
2 +O

(
ε4
)
.

(88)

Following Destrade and Ogden (2010), the weakly nonlinear expansion of
the strain-energy functions in terms of Landau invariants to fourth-order is

WL = µĪ2 +
Ā

3
Ī3 + D̄Ī22 +O

(
ε5
)
, (89)

where D̄ = λ/2 + B̄ + Ḡ. Hence, the corresponding material constants
of the incompressible neo-Hookean, two-parameter Mooney-Rivlin, and five-
parameter Mooney-Rivlin solids are:

WNH : µ = 2C10, Ā = −8C10, D̄ = 2C10

WMR2 : µ = 2(C10 + C01), Ā = −8(C10 + 2C01), D̄ = 2(3C01 + C10)

WMR5 : µ = 2(C10 + C01), Ā = −8(C10 + 2C01),

D̄ = 2(3C01 + C10 + 2C20 + 2C11 + 2C02).

(90)

To represent the strain-energy function in terms of the Murnaghan ex-
pansion, we substitute Eq. (75) into (69) to get

WNH =− C10J2 − C10J3,

WMR2 =− (C10 + C01)J2 − (C10 + 2C01)J3,

WMR5 =− (C10 + C01)J2 − (C10 + 2C01)J3 + (C20 + C11 + C02)J
2
2 +O

(
ε4
)
.

(91)
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Similarly, from (89) and (29), the expansion of the strain-energy functions in
terms of Murnaghan invariants is

WM = a1J2 + a5J3 + b1J
2
2 +O

(
ε4
)
, (92)

where b1 is O (ε) material constant. Therefore, for the incompressible neo-
Hookean, two-parameter Mooney-Rivlin, and five-parameter Mooney-Rivlin
solids, we have the relationships between the material constants are

WNH : a1 = −C10, a5 = −C10, b1 = 0,

WMR2 : a1 = −(C10 + C01), a5 = −(C10 + 2C01), b1 = 0,

WMR5 : a1 = −(C10 + C01), a5 = −(C10 + 2C01), b1 = (C20 + C11 + C02).
(93)

4.2.2. Stress-strain relationships in third-order elasticity

Similarly, we use the fourth-order strain-energy function in Murnaghan
expansion to solve the third-order Cauchy stress tensor. Then, based on Eq.
(92), we have

∂WM

∂IC
= −2

∂WM

∂J2
+

∂WM

∂J3
= −2a1 + a5 − 4b1J2,

∂WM

∂IIC
=

∂WM

∂J2
− ∂WM

∂J3
= a1 − a5 + 2b1J2.

(94)

Referring to the Eq. (59), the incompressibility condition IIIC = 1 gives

e = −α−K + β − L+O
(
ε4
)

(95)

With this equation, the Eq. (60) can be rewritten as

b−1 = K− e−α+ (1−K − L)I− 2β + αe+O
(
ε4
)
. (96)

In addition, considering the e is O (ε2), the J2 in Eq. (61) can be reduced to

J2 = K − β +O
(
ε4
)
. (97)

Therefore, substituting (94) and (96) into (67), we can derive the Cauchy
stress tensor by

t =− 2a1e− (2a1 − 2a5)K− 2a1α− 4b1Ke+ (2a1 − 2a5)αe− (4a1 − 4a5)β

+ (−6a1 + 4a5 + (2a1 − 2a5 − 12b1)K + (2a1 − 2a5)L− 12b1β − p)I.
(98)
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Specifically, according to the Eq. (93), for incompressible neo-Hookean solid,
the Cauchy stress tensor is given by

t = 2C10e+ 2C10α+ (2C10 − p)I+O
(
ε4
)
. (99)

For incompressible two-parameter Mooney-Rivlin solid, the Cauchy stress
tensor is given by

t =2(C10 + C01)e+ 2(C10 + C01)α− 2C01K+ 2C01αe− 4C01β

+ (2C10 − 2C01(1−K − L)− p)I+O
(
ε4
)
.

(100)

For incompressible five-parameter Mooney-Rivlin solid, the Cauchy stress
tensor is given by

t =2(C10 + C01)e+ 2(C10 + C01)α− 2C01K

− 4(C20 + C11 + C02)Ke+ 2C01αe− 4C01β

+ (2C10 − 2C01(1−K − L) + 12(C20 + C11 + C02)(β −K)− p)I+O
(
ε4
)
.

(101)

5. Conclusion

nonlinear elastic behaviour of soft materials is of significant importance
across many fields, including biology, materials science, geophysics, and
acoustics. In this paper, we have given new results for the expansion of the
strain-energy functions and Cauchy stress tensor to O (ε4) where ε =

√
H ·H

and 0 < ε ≤ 1 for the weakly nonlinear asymptotic expansion for small per-
turbations to the deformation gradient tensor F = I + H. These theories
provide us with powerful tools for understanding and predicting the mechan-
ical response of soft materials under complex loading conditions.

By examining distinct invariants of strain tensors, strain-energy func-
tions, stress-strain relations, and transformation relations of material pa-
rameters, we reveal the connections between different elastic theories and
expand the energy density function to third-order and fourth-order terms
under the framework of weak nonlinear theory. Such efforts not only guide
further research on the elastic behavior of soft materials but also contribute
to finding solutions for practical problems. It is worth highlighting that this
paper also addresses the strain-energy function and stress-strain relationship
of soft materials under incompressible conditions. This consideration facil-
itates the modelling and analysis of practical problems while providing a
simplified approach to tackling complex problems.
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