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A universal relation is an algebraic relation between stress and strain that holds for any material within 

a certain class, irrespective of the exact form of the material response function and parameter values. 

Classical universal relations, such as Rivlin’s famous relation for simple shear, apply to stress components 

produced by one and the same deformation. We present a family of relations that connect stress com- 

ponents under different deformations, which we call para-universal relations to highlight this difference. 

The proposed para-universal relations hold for any orthotropic material whose response function is ad- 

ditively decomposed into terms, each of which possesses a symmetry with respect to one of the axes 

of orthotropy. Using basic properties of the permutation group S 3 , we demonstrate that such an additive 

decomposition implies the proposed identities. The established para-universal relations hold for an arbi- 

trary local deformation and, like classical universal relations, are linked to material symmetry and apply 

to a wide class of materials. Since the proposed para-universal relations do not hold for all orthotropic 

material models, they present a convenient way to test for the suitability of additively split strain-energy 

functions, which are often used to model the nonlinearly elastic response of soft tissues. Such a test can 

be performed on collected experimental data prior to choosing an exact form of the response function 

and fitting its parameters. We use published experimental data for human myocardium and also synthetic 

data to illustrate this. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

An algebraic relation that connects components of stress and

strain tensors is called a universal relation if it holds for any mate-

rial within a certain class, independently of the choice of the con-

stitutive function and parameter values. The universal relations are

useful in directing modelling and experimental studies of material

response; in particular, they allow rejection of candidate material

models based on the analysis of experimental data [1–3] . A well-

known example is Rivlin’s relation for simple shear [4] , 

σ11 − σ22 = γ σ12 , (1)

which holds in any isotropic elastic material ( σ ij are components

of the Cauchy stress tensor, and γ is the amount of shear). Ac-

cording to Pucci and Saccomandi [2] , a class of materials to which

universal relations apply is defined by a material symmetry group,

such as the group of orthogonal transformations O (3) in the case

of relation (1) . The coaxiality of the left Cauchy–Green deforma-

tion tensor b and the Cauchy stress tensor σ , which is a hallmark

of isotropy, was used by Beatty [1] to describe a class of universal
∗ Corresponding author. 
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elations by considering the tensor equation σb = b σ, from which

1) may be derived. This motivated a method for deriving universal

elations that hold for any universal solution [2] . Interestingly, this

ethod does not allow universal relations that hold for materials

haracterised solely by orthotropic symmetry to be obtained [5] .

urthermore, any general nonlinear universal relation is reducible

o one or several linear relations [2,3] . Hence, narrower material

lasses than those defined by symmetry groups are considered in

his context [3,6] . See [7] for a review on universal solutions and

elations, and also [3,8–11] for related results. 

The universal relations mentioned above link components of

he Cauchy stress tensor evaluated at one arbitrarily chosen de-

ormation. We describe a family of relations between components

f stress produced in distinct but related deformations. We con-

ider the term para-universal relations appropriate to highlight this

ifference, as “para-” stands for “besides” and “distinct from, but

nalogous to” [12] . We will show that, like universal relations, the

roposed para-universal relations are linked to material symmetry

nd can direct constitutive modelling. To our knowledge, these re-

ations had not been previously studied. 

Latorre and Montans [13] observed that the shear response

urves corresponding to 6 shear modes are linearly dependent in a

pline-based material model. Specifically, if σ ij , i � = j , are the shear
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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tress components corresponding to different simple shear defor-

ations at the same amount of shear, then 

12 + σ23 + σ31 − ( σ21 + σ32 + σ13 ) = 0 (2) 

olds, for a strain-energy function of the form �LM 

=
 3 
i ≥ j=1 ω i j (E i j ) , where E is the Lagrangian logarithmic strain

ensor. The terms ω i j (E i j ) are arbitrary spline functions of the

espective scalar components E i j , which are fitted to experimental

ata, following the “What You Get Is What You Prescribe” ap-

roach. Even though the numbers of data points and unknown

oefficients match, the linear dependence of the predicted shear

tresses precludes fitting the model to shear data alone, and other

est protocols are required, as discussed in [13] . This observation

otivated our study. 

We demonstrate that condition (2) is a consequence of two fac-

ors: ( i ) the additive decomposition of the strain-energy function

nd ( ii ) the symmetries exhibited by the additive terms. While

his condition is not satisfied by an arbitrary orthotropic mate-

ial, it does hold for additively split response functions, whose

erms are invariant with respect to a permutation of two axes

f orthotropy. Any orthotropic response composed of orthogonal

ransversely isotropic components falls into this category, includ-

ng many nonlinearly elastic models for soft biological tissues. In

ection 2 we use basic properties of the permutation group S 3 to

rove a para-universal relation for such materials in a general ten-

orial form, from which condition (2) is recovered as a special case.

n Section 3 we use real and synthetic experimental data to illus-

rate how the para-universal relation indicates a suitability of the

forementioned class of constitutive models. 

.1. Basic definitions 

Let a deformation of a 3-dimensional body B be given by

 = χ(X ) . We consider unconstrained and incompressible Cauchy

lastic materials, in which the Cauchy stress tensors are given

y σ = g (F ) and σ = −p1 + g (F ) , respectively, where F = ∂ x /∂ X
s the deformation gradient, p is the incompressibility-related La-

range multiplier, and 1 is the identity tensor. In particular, we

re interested in hyperelastic response g (F ) = 2 F (∂ W (C ) /∂ C ) F T ,

here W ( C ) is the strain-energy function, and C = F T F is the right

auchy–Green deformation tensor. For brevity, we will write σ( F )

nd imply that the Cauchy stress is computed in one of the above

ays. The objectivity requirement (also known as frame indiffer-

nce), reads 

(QF ) = Q σ(F ) Q 

T , ∀ Q ∈ SO (3) , ∀ F , (3)

here SO (3) = { Q ∈ L (R 

3 , R 

3 ) | Q 

T Q = 1 , det Q = 1 } is the group of

roper orthogonal transformations. Further, Q ∈ SO (3) is called a

aterial symmetry of a given material model, if σ(FQ 

T ) = σ(F ) , ∀ F ;

ence, a material symmetry group Q ⊆ SO (3) is formed. By objec-

ivity (3) , we have, 

(QFQ 

T ) = Q σ(F ) Q 

T , ∀ Q ∈ Q , ∀ F . (4)

or example, the symmetry group of a transversely isotropic ma-

erial consists of all rotations that do not affect the alignment of

ome given axis m 0 , 

 m 0 
= { Q ∈ SO (3) | Qm 0 = ±m 0 } . (5)

he symmetry group of an orthotropic material is 

 O = { 1 , Q 1 , Q 2 , Q 3 } , with Q i = 2 e i � e i − 1 , (6) 

here ( e 1 , e 2 , e 3 ) are mutually orthogonal material axes, and Q i is

 rotation about e i by π . Axes ( e 1 , e 2 , e 3 ) must be distinguished, as

n orthotropic material may behave differently along these direc-

ions. Transverse isotropy is a special case of orthotropy: this can

e checked directly by taking e 1 = m 0 , in which case all directions

panned by e and e are equivalent. 
2 3 
. The para-universal relation for additively decomposed 

rthotropic materials 

In order to formulate and prove the proposed para-universal re-

ation in its general form, we introduce additional notation. Con-

ider the symmetric group S 3 = { a, b, c, 1 , p, n } , which consists of

ll possible permutations of the three-element set {1, 2, 3}: 

 : { 1 , 2 , 3 } �→ { 2 , 1 , 3 } , b : { 1 , 2 , 3 } �→ { 1 , 3 , 2 } , 
 : { 1 , 2 , 3 } �→ { 3 , 2 , 1 } , 1 : { 1 , 2 , 3 } �→ { 1 , 2 , 3 } , 

p : { 1 , 2 , 3 } �→ { 2 , 3 , 1 } , n : { 1 , 2 , 3 } �→ { 3 , 1 , 2 } . 
(7) 

he group operation is the superposition of permutations, and the

ollowing identities hold: 

aa = bb = cc = pn = np = 1 , n = ab = bc = ca, 

p = ba = cb = ac, a = nb = bp = cn = pc, 
b = nc = cp = an = pa, c = na = ap = bn = pb. 

(8) 

Every permutation x ∈ S 3 can be identified with a tensor

 x ∈ O (3), which permutes coordinate axes { e i } in the reference

r current configuration, that is, Q 1 = 1 , Q a = e 1 � e 2 + e 2 � e 1 +
 3 � e 3 , and so on. The superposition of permutations naturally

orresponds to the tensor multiplication, ∀ x, y ∈ S 3 , Q x Q y ≡ Q xy . The

ction of a permutation operator on a stress response function σ
an now be defined via the rule 

 [ σ(F )] := σ(FQ ) , or , x [ σ(F )] := σ(FQ x ) . (9)

The left-hand side part of definition (9) can be applied to an

rbitrary Q ∈ L (R 

3 , R 

3 ) , but we will only be dealing with those

 ∈ O (3) that correspond to permutations of a given triad { e i }. The

esponse function σ is invariant under permutations that belong

o the material’s symmetry group (and only under those permuta-

ions), 

 x ∈ Q ⇐⇒ Q x [ σ] = σ, ∀ x ∈ S 3 . (10)

e also observe that y [ x [ σ]] ≡ ( yx )[ σ], ∀ x, y ∈ S 3 , from 

 y [ Q x [ σ(F )]] = Q y [ σ(FQ x )] = σ(FQ y Q x ) 

= (Q y Q x )[ σ(F )] = Q yx [ σ(F )] . (11) 

Therefore, we can drop the square brackets and write sim-

ly yx σ unambiguously. It will prove convenient to introduce the

hortcut notation 

(x ± y ) σ(F ) := x σ(F ) ± y σ(F ) 

= σ(FQ x ) ± σ(FQ y ) , ∀ a, b ∈ S 3 . (12) 

We emphasise that this notation is only used for brevity, as it

s impossible to meaningfully define the “addition” of permutations

as acted upon a general response functions σ) in such a way that

 + y belongs to S 3 or its extension. 

The following proposition formulates the para-universal relation

nd proves it for a certain subset of orthotropic materials. 

roposition 1. Let the additive components of the total material re-

ponse function σ = σa + σb + σc have symmetries Q a , Q b , Q c , respec-

ively, that is, (a − 1) σa = (b − 1) σb = (c − 1) σc = 0 . Then the iden-

ity 

( 1 + p + n − a − b − c ) σ = 0 (13) 

olds. 

roof. We show that ( 1 + p + n − a − b − c ) σ = 0 holds for σ =
a , σb , σc separately. For σ = σa , we have 

( 1 + p + n − a − b − c ) σa 

= ( σa − a σa ) + (n σa − c σa ) + (p σa − b σa ) 

= ( σa − σa ) + (n σa − ca ︸︷︷︸ 
n 

σa ) + (p σa − ba ︸︷︷︸ 
p 

σa ) = 0 , (14) 
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where we have used a σa = σa and the identities (8) . Similarly, 

( 1 + p + n − a − b − c ) σb = ( σb − σb ) + (n σb − ab σb ) 

+ (p σb − cb σb ) = 0 , (15)

( 1 + p + n − a − b − c ) σc = ( σc − σc ) + (n σc − bc σc ) 

+ (p σc − ab σc ) = 0 . (16)

Therefore, Eq. (13) holds by additivity. �

Eq. (13) is tensorial and holds for all admissible deformation

gradients F . Therefore, it can be specialised for various forms of the

deformation gradient and expanded in the components of σ . The

expansion in components is given by a double contraction with

e i � e j , i, j = 1 , 2 , 3 . Using (3) and (9) , we obtain 

(
x −1 σ(F ) 

)
: e i � e j = e i · σ(FQ 

T 
x ) e j 

= e i · Q 

T 
x σ(Q x FQ 

T 
x ) Q x e j = σ(F ′ ) : e ′ 

i 
� e ′ 

j 
, 

(17)

where e ′ 
i 
= Q x e i , F ′ = Q x FQ 

T 
x . Note that if a permutation matrix

Q x ∈ O (3) is not a proper orthogonal transformation, then it can be

replaced with −Q x , which permutes the axes in exactly the same

way. 

Now consider the simple shear F = F 12 (γ ) ≡ 1 + γ e 2 � e 1 and

choose the corresponding shear component of stress ( i = 1 , j = 2 ).

In view of the above identity, (8) 1 , and (13) , we have 

0 = { σ(F 12 ) + p σ(F 12 ) + n σ(F 12 ) 

− a σ(F 12 ) − b σ(F 12 ) − c σ(F 12 ) } : e 1 � e 2 

= σ(F 12 ) : e 1 � e 2 + σ(F 31 ) : e 3 � e 1 + σ(F 23 ) : e 2 � e 3 

−σ(F 21 ) : e 2 � e 1 − σ(F 13 ) : e 1 � e 3 − σ(F 32 ) : e 3 � e 2 , 

(18)

which we can write as 

σ12 (F 12 ) + σ23 (F 23 ) + σ31 (F 31 ) − σ21 (F 21 ) − σ32 (F 32 ) − σ13 (F 13 )

= 0 , (19)

thereby recovering condition (2) . Taking normal components of the

stress tensor ( i = j = 1 ) yields a different scalar relation, 

σ11 (F 12 ) + σ22 (F 23 ) + σ33 (F 31 ) − σ22 (F 21 ) − σ11 (F 13 ) 

−σ33 (F 32 ) = 0 , (20)

which can be interpreted as a relation between the Poynting effect

quantified in six different shear modes (see [14] for the definition

and analysis of the Poynting effect). 

Another example is the case of isochoric biaxial stretch, which

with intentional abuse of notation we define as F 12 = λ1 e 1 �

e 1 + λ2 e 2 � e 2 + ( λ1 λ2 ) 
−1 / 2 

e 3 � e 3 , and five other deformations

F ij ( i � = j ) are obtained from the corresponding permutations of { e i }.

Scalar relations for the shear component i = 1 , j = 2 and the nor-

mal component i = j = 1 have exactly the same form as equa-

tions (19) and (20) , respectively, in which F ij now represent biaxial

stretch deformations. The relations for the remaining stress com-

ponents are 

σ13 (F 12 ) + σ12 (F 23 ) + σ23 (F 31 ) − σ23 (F 21 ) − σ12 (F 13 ) 

−σ13 (F 32 ) = 0 , (21)

σ22 (F 12 ) + σ33 (F 23 ) + σ11 (F 31 ) 

−σ11 (F 21 ) − σ22 (F 13 ) − σ33 (F 32 ) = 0 , (22)

σ23 (F 12 ) + σ12 (F 23 ) + σ13 (F 31 ) − σ13 (F 21 ) − σ12 (F 13 ) 

−σ23 (F 32 ) = 0 , (23)
σ33 (F 12 ) + σ11 (F 23 ) + σ22 (F 31 ) − σ33 (F 21 ) − σ22 (F 13 ) 

−σ11 (F 32 ) = 0 . (24)

ote that by relabelling the deformation gradients F ij , each of

he Eqs. (21) –(24) can be represented as either Eqs. (19) or

20) . However, this does not imply that Eqs. (19) –(24) are not

ndependent. 

. Examples. Constitutive models for myocardium 

The para-universal relations derived above can be used to test

ow well mechanical behaviour of a real orthotropic material can

e captured by a strain-energy function that is additively de-

omposed, as discussed previously. This can be done prior to

hoosing an exact form of the response function and fitting its

arameters. 

We compare four hyperelastic models for myocardium, namely

hree variants of the Holzapfel–Ogden model [15] and the model

roposed by Costa et al. [16] (“Costa Law”). All these models are in-

ompressible, composed of exponential Fung-type terms [17] , and

eflect the orthotropy of myocardium response and microstruc-

ure, which is defined in terms of the local orthonormal basis

 0 , s 0 , n 0 . A general Holzapfel–Ogden model was recently studied

y Guan et al. [18] , as given by 

gHO = ψ iso (I 1 ) + 

∑ 

i =f , s , n 

ψ i (I 4 i ) + 

∑ 

i j= fs , fn , sn 

ψ i j ( ̂ I 8 i j ) , (25)

here 

 iso (I 1 ) = 

a 

2 b 
{ exp [ b(I 1 − 3)] − 1 } , (26)

 i (I 4 i ) = 

a i 
2 b i 

{
exp [ b i (I 4 i − 1) 2 ] − 1 

}
, i = f , s , n , (27)

 i j ( ̂ I 8 i j ) = 

a i j 

2 b i j 

{
exp (b i j ̂

 I 8 i j ) − 1 

}
, i � = j = f , s , n , (28)

 1 = tr C , I 4f = f 0 ·Cf 0 , I 4s = s 0 ·Cs 0 , I 4 n = n 0 ·Cn 0 , (29)

ˆ 
 8 fs = ( f 0 ·Cs 0 ) 

2 
, ˆ I 8 fn = ( f 0 ·Cn 0 ) 

2 
, ˆ I 8 sn = ( s 0 ·Cn 0 ) 

2 
. (30)

The strain-energy function �gHO is determined by 14 parameters,

even of which have the dimension of stress, and the other seven

re non-dimensional. The specific Holzapfel–Ogden model intro-

uced in [15] includes only 3 anisotropic terms (f, s, and fs), hence

equiring only 8 parameters, 

HO = ψ iso (I 1 ) + ψ f (I 4f ) + ψ s (I 4s ) + ψ fs ( ̂ I 8 fs ) . (31)

his model can be modified to capture local variability of struc-

ural directions (also known as fibre dispersion ) by means of the

eneralised Structure Tensors [19,20] , as was formulated in [21] , 


 
HO = ψ iso (I 1 ) + ψ f (I 
 4f ) + ψ s (I 
 4s ) + ψ fs ( ̂ I 
 80 fs ) , (32)

here the dispersed invariants are defined as I 
 
4f , s 

= H f , s : C and

ˆ 
 


 
80 fs 

= 4 ̂  H fs :: E � E . Here E is the Green–Lagrange strain tensor,

 f,s and 

ˆ H fs are the second-order and fourth-order structure ten-

ors (see [21] for details). Two additional parameters, κ f and κs ,

re needed to describe the extent of the assumed axisymmetric

rientation dispersion of structural directions around the princi-

al material axes f 0 and n 0 . While the structure parameters κ f,s 

hould be estimated from histological studies, we treat them here

henomenologically. The no-dispersion case κf , s = 0 recovers the

odel (31) exactly. 

The fourth model is the Costa Law, 

CL = c{ exp Q − 1 } , Q = E : A : E , (33)
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Fig. 1. Optimal fits of the shear stress versus amount of shear for the constitutive models (25), (31) –(33) to experimental data for human myocardium [23] in 6 shear 

modes. All models approximate the data with minor disagreement. The para-universal condition (19) is satisfied by the data up to the error of �abs = 0 . 129 , �rel = 0 . 022 . 

The abbreviations gHO, HO, HO 
 , CL stand for the general Holzapfel–Ogden model (25) , the Holzapfel–Ogden model (31) , the Holzapfel–Ogden model with dispersion (32) , 

and the Costa Law (33) , respectively. 

Fig. 2. Optimal fits of the shear stress versus amount of shear for the constitutive models (25), (31) , and (33) to synthetic data generated using the strain-energy func- 

tion (32) . The models (25) and (31) (top row) provide less accurate approximation to the data, as a consequence of higher disagreement between the data and the para- 

universal condition (19) , �abs = 0 . 299 , �rel = 0 . 029 . 
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Fig. 3. Optimal fit of the shear stress versus amount of shear for the Costa Law model (33) (right) to the synthetic data generated using the Holzapfel–Ogden 

model (31) (left), �abs = �rel = 0 . This example demonstrates that some data sets are better captured by additively split models. Models (25) and (32) are not shown, 

as they include model (31) as their special case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

i  

t  

a

 

w  

F  

0  

d  

w  

p  

w  

t  

H  

w  

c  

o

 

r  

I

O  

w

4

 

u  

a  

h  

f  

h  

a  

t  

p  

t  

t  

u  

r

 

s  

s  

r  

t  

o  

f  

a  

s  

p  
where A is the fourth-order structure tensor, whose non-zero

components are A iiii = b ii , A i ji j = A i j j i = A j i j i = A jii j = 

1 
2 b i j , i � = j, for

i, j = f , s , n , that is, 7 parameters in total. 

Of the four hyperelastic models introduced above, only mod-

els (25) and (31) follow the para-universal relation (13) by sat-

isfying the prerequisites of Proposition 1 : invariants I 4f and I 8sn 

are symmetric with respect to reflection Q s ↔ n = f 0 � f 0 + s 0 � n 0 +
n 0 � s 0 , and so on. The same applies to the model (32) in the

special case κf = κs , but not in general, due to the coupling term

ψ fs ( ̂ I 
 
80 fs 

) . As for the Costa Law (33) , the Proposition 1 applies to it

if the number of independent components of the structure tensor

A is reduced from 6 to 2. Thus, models (33) and (32) do not adhere

to the relation (13) . 

The para-universal relation Eqs. (19) –(24) can be used to exam-

ine experimental data only if the material response is measured in

6 different deformation modes, which are related in a precise way.

Such data sets are rare and, to our knowledge, are limited to triax-

ial shear tests [22,23] . In order to measure quantitatively how well

the experimental data satisfy condition (19) , we define the abso-

lute and the relative discrepancies 

�abs = 

1 

N 

N ∑ 

k =1 

∣∣σ k 
12 + σ k 

23 + σ k 
31 − σ k 

21 − σ k 
32 − σ k 

13 

∣∣, (34)

�rel = �abs / max 
i, j,k 

∣∣σ k 
i j 

∣∣, (35)

where k is the data point index, and N is the total number of data

points in each deformation mode. For a given material model, we

denote the predicted stresses ˆ σ k 
i j 

and define the absolute discrep-

ancy ˆ �abs , by analogy with (34) , and the goodness of fit, δfit =∑ N 
k =1 

∑ 

i, j 

∣∣∣σ k 
i j 

− ˆ σ k 
i j 

∣∣∣. It can be shown that 

�abs ≤ δfit + 

ˆ �abs . (36)

Given a suitable data set, the evaluation of �abs and �rel is

straightforward. Inequality (36) implies that �abs is a lower bound

of the goodness of fit δfit for models that satisfy condition (19) ,

since ˆ �abs = 0 holds for them. The higher the discrepancies are for

the actual data, the worse is the best possible fit of such models.

If �abs and �rel are sufficiently high, then this class of additively

split models has to be rejected. Otherwise, such models should be

considered and may or may not produce good fits depending on

other factors. We illustrate this below. 

As the first example we take the data collected from mechan-

ical tests of passive human myocardium [23] . To make the ex-

perimental data consistent across different shear modes, we in-

terpolate each mode at N = 20 points γ = 0 . 025 . . . 0 . 5 . The values

�abs = 0 . 129 , �rel = 0 . 022 are computed as defined in (34) –(35) .
he parameter optimisation was performed in Mathematica 11 us-

ng the Nelder–Mead method implemented by the built-in func-

ion Minimize [24] . All four models (25), (31) –(33) produce almost

 perfect fit to the data, as shown in Fig. 1 . 

In order to consider the case of higher discrepancies �abs , �rel ,

e resort to generating an artificial data set using the model (32) .

or the specific data generated we have �abs = 0 . 299 , �rel =
 . 0299 . We used the same optimisation procedure, as previously

escribed, to obtain the optimal fits of models (25), (31) –(33) ,

hich are shown in Fig. 2 . As expected, the additively split models

roduce a worse fit, as they follow the para-universal relation (13) ,

hile the data does not. The Costa Law (33) , which does not have

his particular constraint, replicates the material behaviour well.

owever, no general conclusions can be drawn from this example,

hich is only used to illustrate how the para-universal relations

an help select the most suitable class of material models based

n experimental data. 

It should be emphasised that the additive decomposition of the

esponse function should not be viewed as a definite limitation.

n Fig. 3 we show that artificial data generated by the Holzapfel–

gden model (31) , which is additively split, is not approximated

ell by the Costa Law (33) , which is not additively split. 

. Conclusion 

We have proposed a new type of universal results—the para-

niversal relations, which hold for a wide class of materials

nd relate material response in different deformation modes. We

ave considered the para-universal relation (13) and its special

orms (19) –(24) . In Proposition 1 we showed that the relation

olds for any additively decomposed orthotropic response function,

s long as each additive term is symmetric with respect to one of

he axes of orthotropy. In fact, it is only required that each com-

onent is invariant with respect to some permutation of the ma-

erial axes. These prerequisites are automatically satisfied for all

ransversely isotropic and isotropic materials, in which the para-

niversal relation can be viewed as a direct consequence of mate-

ial symmetry. 

Additively decomposed response functions are widespread in

tructure-based constitutive modelling of soft biological tissues,

ee e.g., [19,25] . The decomposition can be justified by the cor-

espondence between physical components of the tissue and the

erms of the response function, or motivated by the convenience

f handling such function, fitting its parameters and its linearised

orm. However, the consequences of the additive decomposition

ssumption in nonlinear elasticity have not been studied. Our re-

ult provides the first rigorous account of this. In addition, the pro-

osed para-universal relation strongly distinguishes two classes of
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rthotropic materials. It is well known that a material with two

amilies of fibres is orthotropic if the families are mechanically

quivalent or if the associated special directions are orthogonal

26,27] . The proposed para-universal relation only holds for the

atter case. The para-universal relation breaks down, for example,

n the case of models with fibre dispersion in coupling terms or

odels that are not additively decomposed. We also note that the

ara-universal relation should be distinguished from the so-called

seudo-universal relations, as discussed in [28] . 

Although our result is primarily of theoretical interest, its pos-

ible practical application to constitutive modelling is illustrated in

ection 3 . If the para-universal relation is not satisfied by exper-

mental data collected from mechanical tests, the class of mate-

ial models mentioned above should be rejected, as no model of

his class will produce a satisfactory representation. Note that the

vailable experimental data sets [22,23] fulfil the para-universal

ondition up to the order of experimental error. In that regard,

ne could make use of the converse result, which has not been

resently established: if a material follows the para-universal rela-

ion, then its response function has the additively split form de-

cribed above. Possible directions of future investigation include

roving or disproving this statement, as well as establishing new

ara-universal relations for other general forms of response func-

ions. 
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