The schedule for the conference is below. The abstracts can be found here.

All talks will take place in room MS.03 of the Mathematical Institute (see campus map), and all lunches and dinners, except for the conference dinner on Thursday, will be served in the common room.

 09:30 - 10:20Registration 
 10:20 - 10:30Welcome 
 10:30 - 12:00Bjorn PoonenIntroduction to the Cohen-Lenstra heuristics
 12:00 - 15:30Lunch break 
 15:30 - 16:30Wei HoRanks of elliptic curves: heuristics, theorems, and data (revisited!)
 17:00 - 18:00Tim DokchitserOverview of Selmer parity
 09:30 - 10:00Mark ShustermanElementary approaches to class numbers of quadratic number fields
 10:15 - 11:15Daniel Kane Average Phi-Selmer of Elliptic Curves
 11:30 - 12:30Jürgen Klüners4-Ranks of Class Groups of Quadratic Number Fields and Applications
 12:30 - 15:30Lunch break 
 15:30 - 16:30Ila Varma The average size of 3-torsion elements in ray class groups of quadratic fields
 17:00 - 18:00Cornelius Greither CL heuristics for Galois modules and Iwasawa modules
 09:30 - 10:00Jack Klys The distribution of 3-torsion in cyclic cubic fields
 10:15 - 11:00Joseph GuntherCounting Low-Degree Extensions of Function Fields
 11:15 - 12:00Amanda TuckerThe statistics of the genus numbers of cubic fields
 12:15 - 13:00Zev KlagsbrunPhi-Selmer groups and the Cohen-Lenstra heuristics
 13:00Lunch and free afternoon 
 09:30 - 10:00Adam MorganParity of Selmer ranks in quadratic twist families
 10:30 - 11:30Jack Thorne2-descent on pointed plane quartics
 12:00 - 12:30Gunter MalleA class group heuristic based on the distribution of 1-eigenspaces in matrix groups
 12:30 - 15:30Lunch break 
 15:30 - 16:30Melanie Matchett WoodNonabelian Cohen-Lenstra heuristics
 17:00 - 18:00Hendrik LenstraAdjusting the Cohen-Martinet hypothesis
 19:30Conference Dinner 
 09:30 - 10:15Frank ThorneLevels of Distribution for Prehomogeneous Vector Spaces
 10:30 - 11:30John Voight Heuristics for narrow class groups and signature ranks of units in number fields
 11:45 - 12:45Manjul BhargavaStatistics for class groups and ideal groups of orders